1. |
Agarwal S, Wendorff JH, Greiner A. Progress in the field of electrospinning for tissue engineering applications. Adv Mater, 2009, 21(32-33): 3343-3351.
|
2. |
胡旭栋, 王光林. 静电纺丝纳米纤维支架在神经组织工程中的研究进展. 中国修复重建外科杂志, 2010, 24(9): 1133-1137.
|
3. |
薛正翔, 李敏. 血管组织工程支架研究进展. 中国修复重建外科杂志, 2009, 23(9): 1134-1137.
|
4. |
Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv, 2010, 28(3): 325-347.
|
5. |
Rnjak-Kovacina J, Weiss AS. Increasing the pore size of electrospun scaffolds. Tissue Eng Part B Rev, 2011, 17(5): 365-372.
|
6. |
Liao S, Li B, Ma Z, et al. Biomimetic electrospun nanofibers for tissue regeneration. Biomed Mater, 2006, 1(3): R45-53.
|
7. |
Li M, Mondrinos MJ, Gandhi MR, et al. Electrospun protein fibers as matrices for tissue engineering. Biomaterials, 2005, 26(30): 5999-6008.
|
8. |
Eichhorn SJ, Sampson WW. Statistical geometry of pores and statistics of porous nanofibrous assemblies. J R Soc Interface, 2005, 2(4): 300-318.
|
9. |
Pham QP, Sharma U, Mikos AG. Electrospun poly (epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules, 2006, 7(10): 2796-2805.
|
10. |
Rnjak-Kovacina J, Wise SG, Li Z, et al. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials, 2011, 32(28): 6729-6736.
|
11. |
Kwon IK, Kidoaki S, Matsuda T. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials, 2005, 26(18): 3929-3939.
|
12. |
Thorvaldsson A, Stenhamre HS, Gatenholm P, et al. Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules, 2008, 9(3): 1044-1049.
|
13. |
Baker SC, Atkin N, Gunning PA, et al. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials, 2006, 27(16): 3136-3146.
|
14. |
Matthews JA, Wnek GE, Simpson DG, et al. Electrospinning of collagen nanofibers. Biomacromolecules, 2002, 3(2): 232-238.
|
15. |
Zhu X, Cui W, Li X, et al. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules, 2008, 9(7): 1795-1801.
|
16. |
McClure MJ, Wolfe PS, Simpson DG, et al. The use of air-flow impedance to control fiber deposition patterns during electrospinning. Biomaterials, 2012, 33(3): 771-779.
|
17. |
Blakeney BA, Tambralli A, Anderson JM, et al. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials, 2011, 32(6): 1583-1590.
|
18. |
Yokoyama Y, Hattori S, Yoshikawa C, et al. Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric. Mater Lett, 2009, 63(9-10): 754-756.
|
19. |
Ki CS, Park SY, Kim HJ, et al. Development of 3-d nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration. Biotechnol Lett, 2008, 30(3): 405-410.
|
20. |
Zhang D, Chang J. Electrospinning of three-dimensional nanofibrous tubes with controllable architectures. Nano Lett, 2008, 8(10): 3283-3287.
|
21. |
Vaquette C, Cooper-White JJ. Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. Acta Biomaterialia, 2011, 7(6): 2544-2557.
|
22. |
Lowery JL, Datta N, Rutledge GC. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly (epsilon-caprolactone) fibrous mats. Biomaterials, 2010, 31(3): 491-504.
|
23. |
Baker BM, Gee AO, Metter RB, et al. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials, 2008, 29(15): 2348-2358.
|
24. |
Phipps MC, Clem WC, Grunda JM, et al. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials, 2012, 33(2): 524-534.
|
25. |
Skotak M, Ragusa J, Gonzalez D, et al. Improved cellular infiltration into nanofibrous electrospun cross-linked gelatin scaffolds templated with micrometer-sized polyethylene glycol fibers. Biomed Mater, 2011, 6(5): 055012.
|
26. |
Annabi N, Nichol JW, Zhong X, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev, 2010, 16(4): 371-383.
|
27. |
Nam J, Huang Y, Agarwal S, et al. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng, 2007, 13(9): 2249-2257.
|
28. |
Simonet M, Schneider OD, Neuenschwander P, et al. Ultraporous 3D polymer meshes by low-temperature electrospinning: use of ice crystals as a removable void template. Polym Eng Sci, 2007, 47(12): 2020-2026.
|
29. |
Leong MF, Rasheed MZ, Lim TC, et al. In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly (D, L-lactide) scaffold fabricated by cryogenic electrospinning technique. J Biomed Mater Res A, 2009, 91(1): 231-240.
|
30. |
Lee JB, Jeong SI, Bae MS, et al. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Tissue Eng Part A, 2011, 17(21-22): 2695-2702.
|
31. |
Choi HW, Johnson JK, Nam J, et al. Structuring electrospun polycaprolactone nanofiber tissue scaffolds by femtosecond laser ablation. J Laser Appl, 2007, 19(4): 225-231.
|
32. |
Sundararaghavan HG, Metter RB, Burdick JA. Electrospun fibrous scaffolds with multiscale and photopatterned porosity. Macromol Biosci, 2010, 10(3): 265-270.
|
33. |
朱雷, 吕丹, 孙明林. 不同环境刺激对骨髓间充质干细胞成软骨分化作用的研究进展. 中国矫形外科杂志, 2010, 18(19): 1618-1621.
|
34. |
Mahmoudifar N, Doran PM. Chondrogenic differentiation of human adiposederived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials, 2010, 31(14): 3858-3867.
|
35. |
Nerurkar NL, Sen S, Baker BM, et al. Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds. Acta Biomaterialia, 2011, 7(2): 485-491.
|
36. |
Kenar H, Kose GT, Toner M, et al. A 3D aligned microfibrous myocardial tissue construct cultured under transient perfusion. Biomaterials, 2011, 32(23): 5320-5329.
|
37. |
Stankus JJ, Guan J, Fujimoto K, et al. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials, 2006, 27(5): 735-744.
|
38. |
Townsend-Nicholson A, Jayasinghe SN. Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules, 2006, 7(12): 3364-3369.
|
39. |
Yang XC, Shah JD, Wang HJ. Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formation. Tissue Eng Part A, 2009, 15(4): 945-956.
|
40. |
Park SH, Kim TG, Kim HC, et al. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomater, 2008, 4(5): 1198-1207.
|