1. |
Guilak F, Cohen DM, Estes BT, et al. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell, 2009, 5(1):17-26.
|
2. |
Dado D, Sagi M, Levenberg S, et al. Mechanical control of stem cell differentiation. Regen Med, 2012, 7(1):101-116.
|
3. |
Daley WP, Peters SB, Larsen M. Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci, 2008, 121(Pt 3):255-264.
|
4. |
Krieg M, Arboleda-Estudillo Y, Puech PH, et al. Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol, 2008, 10(4):429-436.
|
5. |
Ghazanfari S, Tafazzoli-Shadpour M, Shokrgozar MA. Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells. Biochem Biophys Res Commun, 2009, 388(3):601-605.
|
6. |
Maul TM, Chew DW, Nieponice A, et al. Mechanical stimuli differentially control stem cell behavior:morphology, proliferation, and differentiation. Biomech Model Mechanobiol, 2011, 10(6):939-953.
|
7. |
Huang H, Nakayama Y, Qin K, et al. Differentiation from embryonic stem cells to vascular wall cells under in vitro pulsatile flow loading. J Artif Organs, 2005, 8(2):110-118.
|
8. |
Dong JD, Gu YG, Li CM, et al. Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts. Acta Pharmacol Sin, 2009, 30(5):530-536.
|
9. |
Wang H, Riha GM, Yan S, et al. Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line. Arterioscler Thromb Vasc Biol, 2005, 25(9):1817-1823.
|
10. |
Wolfe RP, Ahsan T. Shear stress during early embryonic stem cell promotes hematopoietic and endothelial phenotypes. Biotechnol Bioeng, 2013, 110(4):1231-1242.
|
11. |
Chowdhury F, Na S, Li D, et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater, 2009, 9(1):82-88.
|
12. |
Ward DF Jr, Salasznyk RM, Klees RF, et al. Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway. Stem Cells Dev, 2007, 16(3):467-480.
|
13. |
Kasten A, Müller P, Bulnheim U, et al. Mechanical integrin stress and magnetic forces induce biological responses in mesenchymal stem cells which depend on environmental factors. J Cell Biochem, 2010, 111(6):1586-1597.
|
14. |
McMahon LA, Reid AJ, Campbell VA, et al. Regulatory effects of mechanical strain on the chondrogenic differentiation of MSCs in a collagen-GAG scaffold:experimental and computational analysis. Ann Biomed Eng, 2008, 36(2):185-194.
|
15. |
David V, Guignandon A, Martin A, et al. Ex vivo bone formation in bovine trabecular bone cultured in a dynamic 3D bioreactor is enhanced by compressive mechanical strain. Tissue Eng Part A, 2008, 14(1):117-126.
|
16. |
Sim WY, Park SW, Park SH, et al. A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation. Lab Chip, 2007, 7(12):1775-1782.
|
17. |
Duty AO, Oest ME, Guldberg RE. Cyclic mechanical compression increases mineralization of cell-seeded polymer scaffolds in vivo. J Biomech Eng, 2007, 129(4):531-539.
|
18. |
Pelaez D, Charles Huang CY, Cheung HS. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev, 2009, 18(1):93-102.
|
19. |
Kisiday JD, Frisbie DD, McIlwraith CW, et al. Dynamic compression stimulates proteoglycan synthesis by mesenchymal stem cells in the absence of chondrogenic cytokines. Tissue Eng Part A, 2009, 15(10):2817-2824.
|
20. |
Zouani OF, Kalisky J, Ibarboure E, et al. Effect of BMP-2 from matrices of different stiffness for modulation of stem cell fate. Biomaterials, 2013, 34(9):2157-2166.
|
21. |
Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell, 2006, 126(4):677-689.
|
22. |
Park JS, Chu JS, Tsou AD, et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGFbeta. Biomaterials, 2011, 32(16):3921-3930.
|
23. |
Justin RT, Engler AJ. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One, 2011, 6(1):e15978.
|
24. |
Saha K, Keung AJ, Irwin EF, et al. Substrate modulus directs neural stem cell behavior. Biophys J, 2008, 95(9):4426-4438.
|
25. |
Witkowska-Zimny M, Walenko K, Wałkiewicz AE, et al. Effect of substrate stiffness on differentiation of μmbilical cord stem cells. Acta Biochim Pol, 2012, 59(2):261-264.
|
26. |
Evans ND, Minelli C, Gentleman E, et al. Substrate stiffness affects early differentiation events in embryonic stem cells. Eur Cell Mater, 2009, 18:1-14.
|
27. |
Wang LS, Chung JE, Pui-Yik Chan P, et al. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of hμman mesenchymal stem cells in 3D culture. Biomaterials, 2010, 31(6):1148-1157.
|
28. |
Pek YS, Wan AC, Ying JY. The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials, 2010, 31(3):385-391.
|
29. |
Skardal A, Mack D, Atala A, et al. Substrate elasticity controls cell proliferation, surface marker expression and motile phenotype in amniotic fluid-derived stem cells. J Mech Behav Biomed Mater, 2013, 17:307-316.
|
30. |
Oh S, Brammer KS, Li YJ, et al. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S A, 2009, 106(7):2130-2135.
|
31. |
Migliorini E, Grenci G, Ban J, et al. Acceleration of neuronal precursors differentiation induced by substrate nanotopography. Biotechnol Bioeng, 2011, 108(11):2736-2746.
|
32. |
Christopherson GT, Song H, Mao HQ. The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials, 2009, 30(4):556-564.
|
33. |
Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell, 2006, 126(4):677-689.
|
34. |
Fu J, Wang YK, Yang MT, et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nature methods, 2010, 7(9):733-736.
|
35. |
Nam J, Johnson J, Lannutti JJ, et al. Modulation of embryonic mesenchymal progenitor cell differentiation via control over pure mechanical modulus in electrospun nanofibers. Acta Biomater, 2011, 7(4):1516-1524.
|
36. |
Migliorini E, Ban J, Grenci G, et al. Nanomechanics controls neuronal precursors adhension and differentiation. Biotechnol Bioeng, 2013, 110(8):2301-2310.
|
37. |
Dang JM, Leong KW. Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers. Adv Mater, 2007, 19(19):2775-2779.
|
38. |
Kishore V, Bullock W, Sun X, et al. Tenogenic differentiation of human MSCs induced by the topography of electrochemically aligned collagen threads. Biomaterials, 2012, 33(7):2137-2144.
|
39. |
Ainsworth C. Cell biology:Stretching the imagination. Nature, 2008, 456(7223):696-699.
|
40. |
McBeath R, Pirone DM, Nelson CM, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell, 2004, 6(4):483-495.
|
41. |
Zhang D, Kilian KA. The effect of mesenchymal stem cell shape on the maintenance of multipotency. Biomaterials, 2013, 34(16):3962-3969.
|
42. |
Gao L, McBeath R, Chen CS, et al. Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin. Stem Cells, 2010, 28(3):564-572.
|