1. |
王海波, 杨新明, 张瑛, 等.大段骨缺损修复的组织工程学研究进展.中华生物医学工程杂志, 2013, 19(1):73-76.
|
2. |
Jimi E, Hirata S, Osawa K, et al.The current and future therapies of bone regeneration to repair bone defects.Int J Dent, 2012, 2012:148261.
|
3. |
Audigé L, Griffin D, Bhandari M, et al.Path analysis of factors for delayed healing and nonunion in 416 operatively treated tibial shaft fractures.Clin Orthop Relat Res, 2005, (438):221-232.
|
4. |
杨新明, 孟宪勇, 王耀一, 等.带蒂筋膜瓣包裹自体红骨髓组织工程复合体修复四肢大段骨缺损临床研究.中国医师进修杂志, 2011, 34(23):1-4.
|
5. |
Ahlmann E, Patzakis M, Roidis N, et al.Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes.J Bone Joint Surg (Am), 2002, 84-A (5):716-720.
|
6. |
Finkemeier CG.Bone-grafting and bone-graft substitutes.J Bone Joint Surg (Am), 2002, 84-A (3):454-464.
|
7. |
Giannoudis PV, Dinopoulos H, Tsiridis E.Bone substitutes:an update.Injury, 2005, 36 Suppl 3:S20-27.
|
8. |
Dimitriou R, Jones E, McGonagle D, et al.Bone regeneration:current concepts and future directions.BMC Med, 2011, 9:66.
|
9. |
Alcaide M, Portolés P, López-Noriega A, et al.Interaction of an ordered mesoporous bioactive glass with osteoblasts, fibroblasts and lymphocytes, demonstrating its biocompatibility as a potential bone graft material.Acta Biomater, 2010, 6(3):892-899.
|
10. |
Schmidlin PR, Nicholls F, Kruse A, et al.Evaluation of moldable, in situ hardening calcium phosphate bone graft substitutes.Clin Oral Implants Res, 2013, 24(2):149-157.
|
11. |
Kim J, McBride S, Dean DD, et al.In vivo performance of combinations of autograft, demineralized bone matrix, and tricalcium phosphate in a rabbit femoral defect model.Biomed Mater, 2014, 9(3):035010.
|
12. |
Shi Q, Li Y, Sun J, et al.The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2.Biomaterials, 2012, 33(28):6644-6649.
|
13. |
Dvir T, Timko BP, Kohane DS, et al.Nanotechnological strategies for engineering complex tissues.Nat Nanotechnol, 2011, 6(1):13-22.
|
14. |
Tuan RS.Regenerative medicine in 2012:the coming of age of musculoskeletal tissue engineering.Nat Rev Rheumatol, 2013, 9(2):74-76.
|
15. |
O'Keefe RJ, Mao J.Bone tissue engineering and regeneration:from discovery to the clinic-an overview.Tissue Eng Part B Rev, 2011, 17(6):389-392.
|
16. |
Liu Y, Lim J, Teoh SH.Review:development of clinically relevant scaffolds for vascularised bone tissue engineering.Biotechnol Adv, 2013, 31(5):688-705.
|
17. |
Bose S, Roy M, Bandyopadhyay A.Recent advances in bone tissue engineering scaffolds.Trends Biotechnol, 2012, 30(10):546-554.
|
18. |
Bohner M.Resorbable biomaterials as bone graft substitutes.Mater Today, 2010, 13(1-2):24-30.
|
19. |
He B, Yuan X, Jiang DM.Molecular self-assembly guides the fabrication of peptide nanofiber scaffolds for nerve repair.RSC Adv, 2014, 4(45):23610-23621.
|
20. |
Luo Z, Zhang S.Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society.Chem Soc Rev, 2012, 41(13):4736-4754.
|
21. |
Luo Z, Wang S, Zhang S.Fabrication of self-assembling D-form peptide nanofiber scaffold d-EAK16 for rapid hemostasis.Biomaterials, 2011, 32(8):2013-2020.
|
22. |
Zhang S, Holmes T, Lockshin C, et al.Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane.Proc Natl Acad Sci U S A, 1993, 90(8):3334-3338.
|
23. |
Zhao X, Zhang S.Molecular designer self-assembling peptides.Chem Soc Rev, 2006, 35(11):1105-1110.
|
24. |
Schneider A, Garlick JA, Egles C.Self-assembling peptide nanofiber scaffolds accelerate wound healing.PLoS One, 2008, 3(1):e1410.
|
25. |
Zhang S.Fabrication of novel biomaterials through molecular self-assembly.Nat Biotechnol, 2003, 21(10):1171-1178.
|
26. |
Kisiday J, Jin M, Kurz B, et al.Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division:implications for cartilage tissue repair.Proc Natl Acad Sci U S A, 2002, 99(15):9996-10001.
|
27. |
Holmes TC, de Lacalle S, Su X, et al.Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds.Proc Natl Acad Sci U S A, 2000, 97(12):6728-6733.
|
28. |
Ellis-Behnke RG, Liang YX, You SW, et al.Nano neuro knitting:peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision.Proc Natl Acad Sci U S A, 2006, 103(13):5054-5059.
|
29. |
Guo HD, Cui GH, Wang HJ, et al.Transplantation of marrow-derived cardiac stem cells carried in designer self-assembling peptide nanofibers improves cardiac function after myocardial infarction.Biochem Biophys Res Commun, 2010, 399(1):42-48.
|
30. |
Hamada K, Hirose M, Yamashita T, et al.Spatial distribution of mineralized bone matrix produced by marrow mesenchymal stem cells in self-assembling peptide hydrogel scaffold.J Biomed Mater Res A, 2008, 84(1):128-136.
|
31. |
Chen J, Shi ZD, Ji X, et al.Enhanced osteogenesis of human mesenchymal stem cells by periodic heat shock in self-assembling peptide hydrogel.Tissue Eng Part A, 2013, 19(5-6):716-728.
|
32. |
Garreta E, Genové E, Borrós S, et al.Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three-dimensional self-assembling peptide scaffold.Tissue Eng, 2006, 12(8):2215-2227.
|
33. |
Zhang F, Shi GS, Ren LF, et al.Designer self-assembling peptide scaffold stimulates pre-osteoblast attachment, spreading and proliferation.J Mater Sci Mater Med, 2009, 20(7):1475-1481.
|
34. |
Horii A, Wang X, Gelain F, et al.Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration.PLoS One, 2007, 2(2):e190.
|
35. |
Pan HT, Hao SF, Zheng QX, et al.Bone induction by biomimetic PLGA copolymer loaded with a novel synthetic RADA16-P24 peptide in vivo.Mater Sci Eng C Mater Biol Appl, 2013, 33(6):3336-3345.
|
36. |
Mari-Buyé N, Luque T, Navajas D, et al.Development of a three-dimensional bone-like construct in a soft self-assembling peptide matrix.Tissue Eng Part A, 2013, 19(7-8):870-881.
|
37. |
Igwe JC, Mikael PE, Nukavarapu SP.Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.J Tissue Eng Regen Med, 2014, 8(2):131-142.
|
38. |
Firth A, Aggeli A, Burke JL, et al.Biomimetic self-assembling peptides as injectable scaffolds for hard tissue engineering.Nanomedicine (Lond), 2006, 1(2):189-199.
|
39. |
Misawa H, Kobayashi N, Soto-Gutierrez A, et al.PuraMatrix facilitates bone regeneration in bone defects of calvaria in mice.Cell Transplant, 2006, 15(10):903-910.
|
40. |
Yoshimi R, Yamada Y, Ito K, et al.Self-assembling peptide nanofiber scaffolds, platelet-rich plasma, and mesenchymal stem cells for injectable bone regeneration with tissue engineering.J Craniofac Surg, 2009, 20(5):1523-1530.
|
41. |
Ikeno M, Hibi H, Kinoshita K, et al.Effects of self-assembling peptide hydrogel scaffold on bone regeneration with recombinant human bone morphogenetic protein-2.Int J Oral Maxillofac Implants, 2013, 28(5):e283-289.
|
42. |
Fischer CR, Cassilly R, Cantor W, et al.A systematic review of comparative studies on bone graft alternatives for common spine fusion procedures.Eur Spine J, 2013, 22(6):1423-1435.
|
43. |
Li Z, Hou T, Luo F, et al.Bone marrow enriched graft, modified by self-assembly peptide, repairs critically-sized femur defects in goats.Int Orthop, 2014.[Epub ahead of print].
|
44. |
Hou T, Li Z, Luo F, et al.A composite demineralized bone matrix-self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.Biomaterials, 2014, 35(22):5689-5699.
|
45. |
Xia Y, Peng SS, Xie LZ, et al.A novel combination of nano-scaffolds with micro-scaffolds to mimic extracellularmatrices improve osteogenesis.J Biomater Appl, 2013, 29(1):59-71.
|
46. |
Sargeant TD, Rao MS, Koh CY, et al.Covalent functionalization of NiTi surfaces with bioactive peptide amphiphile nanofibers.Biomaterials, 2008, 29(8):1085-1098.
|