1. |
Cheung HK, Han TT, Marecak DM, et al. Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. Biomaterials, 2014, 35(6):1914-1923.
|
2. |
Nash GM, Bleier J, Milsom JW, et al. Minimally invasive surgery is safe and effective for urgent and emergent colectomy. Colorectal Dis, 2010, 12(5):480-484.
|
3. |
王学军, 徐冰, 刘文英, 等. Nuss微创漏斗胸矫形术后并发症及其处理. 中国修复重建外科杂志, 2009, 23(11):1343-1346.
|
4. |
Koshy ST, Ferrante TC, Lewin SA, et al. Injectable, porous, and cell-responsive gelatin cryogels. Biomaterials, 2014, 35(8):2477-2487.
|
5. |
Yang YP, Chien Y, Chiou GY, et al. Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials, 2012, 33(5):1462-1476.
|
6. |
Nelson CE, Gupta MK, Adolph EJ, et al. Sustained local delivery of siRNA from an injectable scaffold. Biomaterials, 2012, 33(4):1154-1161.
|
7. |
Zhou L, Liang D, He X, et al. The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery. Biomaterials, 2012, 33(9):2734-2745.
|
8. |
Hu J, Chen B, Guo F, et al. Injectable silk fibroin/polyurethane composite hydrogel for nucleus pulposus replacement. J Mater Sci Mater Med, 2012, 23(3):711-722.
|
9. |
厉孟, 刘旭东, 刘兴炎. 京尼平与戊二醛交联明胶微球的性能比较. 中国修复重建外科杂志, 2009, 23(1):87-91.
|
10. |
Zhou L, Liang D, He X, et al. The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery. Biomaterials, 2012, 33(9):2734-2745.
|
11. |
程晓非, 邹德威, 吴继功, 等. 新型可注射型人工髓核材料的植入实验研究. 中国修复重建外科杂志, 2009, 23(6):670-676.
|
12. |
田华科, 王建, 陈超, 等. 体外构建可注射式组织工程髓核的初步研究. 中国修复重建外科杂志, 2009, 23(2):173-177.
|
13. |
陈伟, 刘仲前, 岳元辉, 等. bFGF壳聚糖微球的制备及检测. 中国修复重建外科杂志, 2012, 26(8):989-992.
|
14. |
Adolph EJ, Hafeman AE, Davidson JM, et al. Injectable polyurethane composite scaffolds delay wound contraction and support cellular infiltration and remodeling in rat excisional wounds. J Biomed Mater Res A, 2012, 100(2):450-461.
|
15. |
Xu D, Wu K, Zhang Q, et al. Synthesis and biocompatibility of anionic polyurethane nanoparticles coated with adsorbed chitosan. Polymer, 2010, 51(9):1926-1933.
|
16. |
Tan M, Feng Y, Wang H, et al. Immobilized bioactive agents onto polyurethane surface with heparin and phosphorylcholine group. Macromolecular Research, 2013, 21(5):541-549.
|
17. |
Xu D, Meng Z, Han M, et al. Novel blood-compatible waterborne polyurethane using chitosan as an extender. Journal of Applied Polymer Science, 2008, 109(1):240-246.
|
18. |
Das B, Chattopadhyay P, Mandal M, et al. Bio-based biodegradable and biocompatible hyperbranched polyurethane:a scaffold for tissue engineering. Macromol Biosci, 2013, 13(1):126-139.
|
19. |
Niu Y, Chen KC, He T, et al. Scaffolds from block polyurethanes based on poly (ε-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration. Biomaterials, 2014, 35(14):4266-4277.
|
20. |
奚廷斐, 辛任东, 薛淼, 等. 医疗器械生物学评价. 北京:中国标准出版社, 2012:92-94, 234-235.
|
21. |
Ma S, Song G, Feng N. Preparation and characterization of self-emulsified waterborne nitrocellulose. Carbohydr Polym, 2012, 89(1):36-40.
|
22. |
郭超. 季铵盐阳离子自乳化聚氨酯的合成及应用. 哈尔滨:东北林业大学, 2011.
|
23. |
杨小明, 尹庆水, 张余, 等. 表面含硅微弧氧化涂层镁合金ZK60体外与成骨细胞生物相容性的研究. 中国修复重建外科杂志, 2013, 27(5):612-618.
|
24. |
Lévesque SG, Lim RM, Shoichet MS. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials, 2005, 26(35):7436-7446.
|