1. |
Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260(5110):920-926.
|
2. |
Folkman J, Hochberg M. Self-regulation of growth in three dimensions. J Exp Med, 1973, 138(4):745-753.
|
3. |
Smith MK, Peters MC, Richardson TP, et al. Locally enhanced angiogenesis promotes transplanted cell survival. Tissue Eng, 2004, 10(1-2):63-71.
|
4. |
Atala A, Bauer SB, Soker S, et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 2006, 367(9518):1241-1246.
|
5. |
Pedraza E, Coronel MM, Fraker CA, et al. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc Natl Acad Sci U S A, 2012, 109(11):4245-4250.
|
6. |
Centis V, Vermette P. Enhancing oxygen solubility using hemoglobin- and perfluorocarbon-based carriers. Front Biosci (Landmark Ed), 2009, 14:665-688.
|
7. |
Khattak SF, Chin KS, Bhatia SR, et al. Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnol Bioeng, 2007, 96(1):156-166.
|
8. |
Radisic M, Deen W, Langer R, et al. Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am J Physiol Heart Circ Physiol, 2005, 288(3):H1278-1289.
|
9. |
White JC, Stoppel WL, Roberts SC, et al. Addition of perfluorocarbons to alginate hydrogels significantly impacts molecular transport and fracture stress. J Biomed Mater Research Part A, 2013, 101(2):438-446.
|
10. |
Seifu DG, Isimjan TT, Mequanint K. Tissue engineering scaffolds containing embedded fluorinated-zeolite oxygen vectors. Acta Biomater, 2011, 7(10):3670-3678.
|
11. |
Henkel-Honke T, Oleck M. Artificial oxygen carriers:a current review. AANA J, 2007, 75(3):205-211.
|
12. |
Northup A, Cassidy D. Calcium peroxide (CaO2) for use in modified Fenton chemistry. J Hazard Mater, 2008, 152(3):1164-1170.
|
13. |
Waite AJ, Bonner JS, Autenrieth R. Kinetics and stoichiometry of oxygen release from solid peroxides. Environ Eng Sci, 1999, 16(3):187-199.
|
14. |
Pedraza E, Coronel MM, Fraker CA, et al. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc Natl Acad Sci U S A, 2012, 109(11):4245-4250.
|
15. |
Borden RC, Goin RT, Kao CM. Control of BTEX migration using a biologically enhanced permeable barrier. Groundwater Monitoring Remediation, 1997, 17(1):70-80.
|
16. |
Harrison BS, Eberli D, Lee SJ, et al. Oxygen producing biomaterials for tissue regeneration. Biomaterials, 2007, 28(31):4628-4634.
|
17. |
Oh SH, Ward CL, Atala A, et al. Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials, 2009, 30(5):757-762.
|
18. |
Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life S, 2004, 61(2):192-208.
|
19. |
Bryan N, Ahswin H, Smart N, et al. Reactive oxygen species (ROS)-a family of fate deciding molecules pivotal in constructive inflammation andwound healing. Eur Cell Mater, 2012, 24:249-265.
|
20. |
Bloch K, Papismedov E, Yavriyants K, et al. Photosynthetic oxygen generator for bioartificial pancreas. Tissue Eng, 2006, 12(2):337-344.
|
21. |
Lode A, Krujatz F, Brüggemeier S, et al. Green bioprinting:Fabrication of photosynthetic algae-laden hydrogel scaffolds for biotechnological and medical applications. Engineering in Life Sciences, 2015, 15(2):177-183.
|
22. |
Hopfner U, Schenck TL, Chávez MN, et al. Development of photosynthetic biomaterials for in vitro tissue engineering. Acta Biomater, 2014, 10(6):2712-2717.
|
23. |
Schenck TL, Hopfner U, Chávez MN, et al. Photosynthetic biomaterials:A pathway towards autotrophic tissue engineering. Acta Biomater, 2015, 15:39-47.
|
24. |
Chin K, Khattak SF, Bhatia SR, et al. Hydrogel-perfluorocarbon composite scaffold promotes oxygen transport to immobilized cells. Biotechnol Prog, 2008, 24(2):358-366.
|
25. |
Li Z, Guo X, Guan J. An oxygen release system to augment cardiac progenitor cell survival and differentiation under hypoxic condition. Biomaterials, 2012, 33(25):5914-5923.
|
26. |
Schneider N, Lejeune JP, Deby C, et al. Viability of equine articular chondrocytes in alginate beads exposed to different oxygen tensions. Vet J, 2004, 168(2):167-173.
|
27. |
Ward CL, Corona BT, Yoo JJ, et al. Oxygen generating biomaterials preserve skeletal muscle homeostasis under hypoxic and ischemic conditions. PLoS One, 2013, 8(8):e72485.
|