1. |
Zhang M, Malik AB, Rehman J. Endothelial progenitor cells and vascular repair. Curr Opin Hematol, 2014, 21(3):224-228.
|
2. |
Abd El Aziz MT, Abd El Nabi EA, Abd El Hamid M, et al. Endothelial progenitor cells regenerate infracted myocardium with neovascularisation development. J Adv Res, 2015, 6(2):133-144.
|
3. |
Pellegrini L, Bennis Y, Guillet B, et al. Therapeutic benefit of a combined strategy using erythropoietin and endothelial progenitor cells after transient focal cerebral ischemia in rats. Neurol Res, 2013, 35(9):937-947.
|
4. |
Xu JY, Lee YK, Wang Y, et al. Therapeutic application of endothelial progenitor cells for treatment of cardiovascular diseases. Curr Stem Cell Res Ther, 2014, 9(5):401-414.
|
5. |
Mitchell A, Fujisawa T, Newby D, et al. Vascular injury and repair: a potential target for cell therapies. Future Cardiol, 2015, 11(1):45-60.
|
6. |
Barclay GR, Tura O, Samuel K, et al. Systematic assessment in an animal model of the angiogenic potential of different human cell sources for therapeutic revascularization. Stem Cell Res Ther, 2012, 3(4):23.
|
7. |
Raposo G, Stoorvogel W. Extracellular vesicles:exosomes, microvesicles, and friends. J Cell Biol, 2013, 200(4):373-383.
|
8. |
Katoh M. Therapeutics targeting angiogenesis:genetics and epigenetics, extracellular miRNAs and signaling networks. Int J Mol Med, 2013, 32(4):763-767.
|
9. |
Zhang J, Guan J, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med, 2015, 13:49.
|
10. |
Zhang Y, Chopp M, Meng Y, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg, 2015, 122(4):1-12.
|
11. |
Barile L, Lionetti V, Cervio E, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res, 2014, 103(4):530-541.
|
12. |
Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem, 1946, 166(1):189-197.
|
13. |
Trams EG, Lauter CJ, Salem NJ, et al. Exfoliation of membrane ectoenzymes in the form of micro-vesicles. Biochim Biophys Acta, 1981, 645(1):63-70.
|
14. |
Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem, 1987, 262(19):9412-9420.
|
15. |
Harding CV, Heuser JE, Stahl PD. Exosomes:looking back three decades and into the future. J Cell Biol, 2013, 200(4):367-371.
|
16. |
Ribeiro MF, Zhu H, Millard RW, et al. Exosomes function in proand anti-angiogenesis. Curr Angiogenes, 2013, 2(1):54-59.
|
17. |
Vrijsen KR, Sluijter JP, Schuchardt MW, et al. Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. J Cell Mol Med, 2010, 14(5):1064-1070.
|
18. |
Gould SJ, Raposo G. As we wait:coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles, 2013, 2. doi:10.3402/jev.v2i0.20389.eCollection2013.
|
19. |
Ranghino A, Cantaluppi V, Grange C, et al. Endothelial progenitor cell-derived microvesicles improve neovascularization in a murine model of hindlimb ischemia. Int J Immunopathol Pharmacol, 2012, 25(1):75-85.
|
20. |
Cantaluppi V, Gatti S, Medica D, et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemiareperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int, 2012, 82(4):412-427.
|
21. |
Cantaluppi V, Biancone L, Figliolini F, et al. Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets. Cell Transplant, 2012, 21(6):1305-1320.
|
22. |
Gu S, Zhang W, Chen J, et al. EPC-derived microvesicles protect cardiomyocytes from Ang Ⅱ-induced hypertrophy and apoptosis. PLoS One, 2014, 9(1):e85396.
|
23. |
Wang J, Chen S, Ma X, et al. Effects of endothelial progenitor cell-derived microvesicles on hypoxia/reoxygenation-induced endothelial dysfunction and apoptosis. Oxid Med Cell Longev, 2013, (2013):572729.
|
24. |
Deregibus MC, Cantaluppi V, Calogero R, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood, 2007, 110(7):2440-2448.
|
25. |
Sahoo S, Klychko E, Thorne T, et al. Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res, 2011, 109(7):724-728.
|
26. |
Bitzer M, Ben-Dov IZ, Thum T. Microparticles and microRNAs of endothelial progenitor cells ameliorate acute kidney injury. Kidney Int, 2012, 82(4):375-377.
|
27. |
Cantaluppi V, Medica D, Mannari C, et al. Endothelial progenitor cell-derived extracellular vesicles protect from complementmediated mesangial injury in experimental anti-Thy1.1 glomerulonephritis. Nephrol Dial Transplant, 2015, 30(3):410-422.
|
28. |
Pirro M, Schillaci G, Bagaglia F, et al. Microparticles derived from endothelial progenitor cells in patients at different cardiovascular risk. Atherosclerosis, 2008, 197(2):757-767.
|
29. |
Chen J, Chen S, Chen Y, et al. Circulating endothelial progenitor cells and cellular membrane microparticles in db/db diabetic mouse: possible implications in cerebral ischemic damage. Am J Physiol Endocrinol Metab, 2011, 301(1):E62-71.
|
30. |
Conde-Vancells J, Falcon-Perez JM. Isolation of urinary exosomes from animal models to unravel noninvasive disease biomarkers. Methods Mol Biol, 2012, 909:321-340.
|
31. |
Witwer KW, Buzas EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles, 2013, 2. doi:10.3402/jev.v2i0.20360.eCollection2013.
|
32. |
Théry C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol, 2006, 3. doi: 10.1002/0471143030.cb0322s30.
|
33. |
Cina DP, Xu H, Liu L, et al. Renal tubular angiogenic dysregulation in anti-Thy1.1 glomerulonephritis. Am J Physiol Renal Physiol, 2011, 300(2):F488-498.
|
34. |
Izumiya Y, Araki S, Usuku H, et al. Chronic C-type natriuretic peptide infusion attenuates angiotensin Ⅱ-induced myocardial superoxide production and cardiac remodeling. Int J Vasc Med, 2012, 2012:246058.
|
35. |
Bruyndonckx L, Hoymans VY, Frederix G, et al. Endothelial progenitor cells and endothelial microparticles are independent predictors of endothelial function. J Pediatr, 2014, 165(2):300-305.
|