1. |
Samartzis D, Karppinen J, Mok F, et al. A population-based study of juvenile disc degeneration and its association with overweight and obesity, low back pain, and diminished functional status. J Bone Joint Surg (Am), 2011, 93(7): 662-670.
|
2. |
Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine (Phila Pa 1976), 1995, 20(11): 1307-1314.
|
3. |
Gruber HE, Hanley EN Jr. Analysis of aging and degeneration of the human intervertebral disc: comparison of Surgical specimens with normal controls. Spine (Phila Pa 1976), 1998, 23(7): 751-757.
|
4. |
Rannou F, Lee TS, Zhou RH, et al. Intervertebral disc degeneration: the role of the mitochondrial pathway in annulus fibrosus cell apoptosis induced by overload. J Am J Pathol, 2004, 164(3): 915-924.
|
5. |
Li J, Liu C, Guo Q, et al. Regional variations in the cellular, biochemical, and biomechanical characteristics of rabbit annulus fiborous. PLoS One, 2014, 9(3): e91799.
|
6. |
谢健, 童培建, 肖鲁伟, 等.兔髓核与纤维环细胞生物学特性差异的研究.中国骨伤, 2013, 26(6): 481-485.
|
7. |
Sun J, Zheng Q, Wu Y, et al. Biocompatibility of KLD-12 peptide hydrogel as a scaffold in tissue engineering of intervertebral discs in rabbits. J Huazhong Univ Sci Technol Med Sci, 2010, 30(2): 173-177.
|
8. |
Sun JH, Zheng QX, Wu YC, et al. Culture of nucleus pulposus cells from intervertebral disc on self-assembling KLD-12 peptide hydrogel scaffold. Materials Science and Engineering C, 2010, 30(7): 975-980.
|
9. |
Zhang Lan-lan, Song Hong, Zhao Xiao-jun. Self-assembling short-peptide hydrogel for three-dimensional culture of rabbit articular chondrocytes in vitro.中国组织工程研究与临床康复, 2008, 12(49): 9779-9782.
|
10. |
Xie M, Yang S, Win HL, et al. Rabbit annulus fibrosus cell apoptosis induced by mechanical overload via a mitochondrial apoptotic pathway. J Huazhong Univ Sci Technolog Med Sci, 2010, 30(3): 379-384.
|
11. |
Bian Z, Sun J. Development of a KLD-12 polypeptide/TGF-β1-tissue scaffold promoting the differentiation of mesenchymal stem cell into nucleus pulposus-like cells for treatment of intervertebral disc degeneration. J Int J Clin Exp Pathol, 2015, 8(2): 1093-1103.
|
12. |
Schleich C, Müller-Lutz A, Matuschke F, et al. Glycosaminoglycan chemical exchange saturation transfer of lumbar intervertebral discs in patients with spondyloarthritis. J Magn Reson Imaging, 2015, 42(4): 1057-1063.
|
13. |
Lee P, Tran K, Chang W, et al. Influence of chondroitin sulfate and hyaluronic acid presence in nanofibers and its alignment on the bone marrow stromal cells: cartilage regeneration. J Biomed Nanotechnol, 2014, 10(8): 1469-1479.
|
14. |
Haschtmann D, Ferguson SJ, Stoyanov JV. BMP-2 and TGF-β3 do not prevent spontaneous degeneration in rabbit disc explants but induce ossification of the annulus fibrosus. J Eur Spine J, 2012, 21(9): 1724-1733.
|
15. |
Turner KG, Ahmed N, Santerre JP, et al. Modulation of annulus fibrosus cell alignment and function on oriented nanofibrous polyurethane scaffolds under tension. Spine J, 2014, 14(3): 424-434.
|
16. |
Colombini A, Lopa S, Ceriani C, et al. In vitro characterization and in vivo behavior of human nucleus pulposus and annulus fibrosus cells in clinical-grade fibrin and collagen-enriched fibrin gels. Tissue Eng Part A, 2015, 21(3-4): 793-802.
|
17. |
Saad L, Spector M. Effects of collagen type on the behavior of adult canine annulus fibrosus cells in collagen-glycosaminoglycan scaffolds. J Biomed Mater Res A, 2004, 71(2): 233-241.
|
18. |
Reza AT, Nicoll SB. Hydrostatic pressure differentially regulates outer and inner annulus fibrosus cell matrix production in 3D scaffolds. Ann Biomed Eng, 2008, 36(2): 204-213.
|
19. |
Iu J, Santerre JP, Kandel RA. Inner and outer annulus fibrosus cells exhibit differentiated phenotypes and yield changes in extracellular matrix protein composition in vitro on a polycarbonate urethane scaffold. Tissue Eng Part A, 2014, 20(23-24): 3261-3269.
|
20. |
Xu B, Xu H, Wu Y, et al. Intervertebral disc tissue engineering with natural extracellular matrix-derived biphasic composite scaffolds. PLoS One, 2015, 10(4): e0124774.
|
21. |
Jiang X, Wang K, Ding M, et al. Quantitative grafting of peptide onto the nontoxic biodegradable waterborne polyurethanes to fabricate peptide modified scaffold for soft tissue engineering. J Mater Sci Mater Med, 2011, 22(4): 819-827.
|
22. |
Raghunath J, Georgiou G, Armitage D, et al. Degradation studies on biodegradable nanocomposite based on poly caprolactone/ polycarbonate (80:20%) polyhedral oligomeric silsesquioxane. J Biomed Mater Res A, 2009, 91(3): 834-844.
|
23. |
Jin KM, Kurz B, Huang H, et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix pruduction and cell division: implications for catilage tissue repair. J Proc Natl Acad Sci USA, 2002, 99(15): 9996-10001.
|
24. |
Shi DH, Cai DZ, Zhou CR, et al. Development and potential of a biomimetic chitosan/type II collagen scaffold for cartilage tissue engineering. J Chin Med J (Engl), 2005, 118(17): 1436-1443.
|