1. |
Wheeler DL, Enneking WF. Allograft bone decreases in strength in vivo over time. Clin Orthop Relat Res, 2005, (435) :36-42.
|
2. |
Kappos L, Radue EW, O'Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med, 2010, 362(5) :387-401.
|
3. |
Mandala S, Hajdu R, Bergstrom J, et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science, 2002, 296(5566) :346-349.
|
4. |
de Girolamo L, Arrigoni E, Stanco D, et al. Role of autologous rabbitadiposederived stem cells in the early phases of the repairingprocess of critical bone defects. J Orthop Res, 2011, 29(1) :100-108.
|
5. |
Lane JM, Sandhu HS. Current approaches to experimental bone grafting. Orthop Clin North Am, 1982, 18(2) :213-225.
|
6. |
王鑫, 史册, 郑嵘, 等. 白细胞介素-24 对破骨细胞功能及分化的影响. 实用口腔医学杂志, 2014, 30(4) :456-459.
|
7. |
唐坚, 孙月华. β-磷酸三钙与异体骨植骨治疗跟骨关节内骨折的比较研究. 中国骨与关节损伤杂志, 2006, 21(6) :447-449.
|
8. |
韦盛旺, 赵友明. 跟骨骨折手术治疗的植骨现状. 中国骨与关节损伤杂志, 2011, 26(8) :767-768.
|
9. |
Oo ML, Thangada S, Wu MT, et al. Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem, 2007, 282(12) :9082-9089.
|
10. |
Sawicka E, Dubois G, Jarai G, et al. The sphingosine 1-phosphate receptor agonist FTY720 differentially affects the sequestration of CD4+/CD25+ T-regulatory cells and enhances their functional activity. J Immunol, 2005, 175(12) :7973-7980.
|
11. |
Huang C, Das A, Barker D, et al. Local delivery of FTY720 accelerates cranial allograft incorporation and bone formation. Cell Tissue Res, 2012, 347(3) :553-566.
|
12. |
Chambers TJ, Revell PA, Fuller K, et al. Resorption of bone by isolated rabbit osteoclasts. J Cell Sci, 1984, 66:383-399.
|
13. |
Udagawa N, Takahashi N, Akatsu T, et al. The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology, 1989, 125(4) :1805-1813.
|
14. |
Shin J, Jang H, Lin J, et al. PKCβ positively regulates RANKL-induced osteoclastogenesis by inactivating GSK-3β. Mol Cells, 2014, 37(10) :747-752.
|
15. |
Zhai ZJ, Li HW, Liu GW, et al. Andrographolide suppresses RANKL induced osteoclastogenesis in vitro and prevents inflammatory bone loss in vivo. Br J Pharmacol, 2014, 171(3) :663-675.
|
16. |
Yu MX, Chen XY, Lv CY, et al. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway. Biochem Biophy Res Commun, 2014, 447(2) :364-370.
|
17. |
Tian B, Jiang T, Shao ZY, et al. The prevention of titanium particle-induced osteolysis by OA-14 through the suppression of the p38 signaling pathway and inhibition of osteoclastogenesis. Biomaterials, 2014, 35(32) :8937-8950.
|
18. |
Kim JH, Kim N. Regulation of NFATc1 in osteoclast differentiation. J Bone Metab, 2014, 21(4) :233-241.
|
19. |
Kato K, Matsushita M. Proton concentrations can be a major contributor to the modification of osteoclast and osteoblast differentiation, working independently of extracellular bicarbonateions. J Bone Miner Metab, 2014, 32(1) :17-28.
|
20. |
Ryu J, Kim HJ, Chang EJ, et al. Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J, 2006, 25(24) :5840-5851.
|