1. |
Gottschling S, Saffrich R, Seckinger A, et al. Human mesenchymal stromal cells regulate initial self-renewing divisions of hematopoietic progenitor cells by a β1-integrin-dependent mechanism. Stem Cells, 2007, 25(3) :798-806.
|
2. |
Muhammad H, Schminke B, Miosge N. Current concepts in stem cell therapy for articular cartilage repair. Expert Opin Biol Ther, 2013, 13(4) :541-548.
|
3. |
Dowthwaite GP, Bishop JC, Redman SN, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci, 2004, 117(Pt 6) :889-897.
|
4. |
Mukoyama S, Sasho T, Akatsu Y, et al. Spontaneous repair of partial thickness linear cartilage injuries in immature rats. Cell Tissue Res, 2015, 359(2) :513-520.
|
5. |
Hunziker EB. Growth-factor-induced healing of partial-thickness defects in adult articular cartilage. Osteoarthritis Cartilage, 2001, 9(1) :22-32.
|
6. |
Namba RS, Meuli M, Sullivan KM, et al. Spontaneous repair of superficial defects in articular cartilage in a fetal lamb model. J Bone Joint Surg (Am), 1998, 80(1) :4-10.
|
7. |
Baptista LS, Silva KR, Pedrosa CS, et al. Bioengineered cartilage in a scaffold-free method by human cartilage-derived progenitor cells:a comparison with human adipose-derived mesenchymal stromal cells. Artif Organs, 2013, 37(12) :1068-1075.
|
8. |
Sandell LJ. Etiology of osteoarthritis:genetics and synovial joint development. Nat Rev Rheumatol, 2012, 8(2) :77-89.
|
9. |
Tsuruoka H, Sasho T, Yamaguchi S, et al. Maturation-dependent spontaneous healing of partial thickness cartilage defects in infantile rats. Cell Tissue Res, 2011, 346(2) :263-271.
|
10. |
Yoshioka M, Kubo T, Coutts RD, et al. Differences in the repair process of longitudinal and transverse injuries of cartilage in the rat knee. Osteoarthritis Cartilage, 1998, 6(1) :66-75.
|
11. |
Seol D, McCabe DJ, Choe H, et al. Chondrogenic progenitor cells respond to cartilage injury. Arthritis Rheum, 2012, 64(11) :3626-3637.
|
12. |
Kaneshiro N, Sato M, Ishihara M, et al. Bioengineered chondrocyte sheets may be potentially useful for the treatment of partial thickness defects of articular cartilage. Biochem Biophys Res Commun, 2006, 349(2) :723-731.
|
13. |
Goldring MB. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther Adv Musculoskel Dis, 2012, 4(4) :269-285.
|
14. |
王敏, Peter Chen,刘超, 等. 早期兔骨关节炎软骨CD105+/CD166+细胞及其软骨分化潜能的实验研究. 中国修复重建外科杂志, 2013, 27(7) :793-799.
|
15. |
Yu YP, Wang Q, Liu YC, et al. Molecular basis for the targeted binding of RGD-containing peptide to integrin αVβ3. Biomaterials, 2014, 35(5) :1667-1675.
|
16. |
Zwolanek D, Flicker M, Kirstätter E, et al. β1 integrins mediate attachment of mesenchymal stem cells to cartilage lesions. Biores Open Access, 2015, 4(1) :39-53.
|
17. |
闫德雄, 苏踊跃, 唐红英, 等. 整合素β1在人表皮细胞株HaCaT增殖中影响的研究. 第三军医大学学报, 2006, 28(8) :760-762.
|
18. |
Joos H, Wildner A, Hogrefe C, et al. Interleukin-1 beta and tumor necrosis factor alpha inhibit migration activity of chondrogenic progenitor cells from non-fibrillated osteoarthritic cartilage. Arthritis Res Ther, 2013, 15(5) :R119.
|
19. |
Baptista LS, Silva KR, Pedrosa CS, et al. Bioengineered cartilage in a scaffold-free method by human cartilage-derived progenitor cells:a comparison with human adipose-derived mesenchymal stromal cells. Artif Organs, 2013, 37(12) :1068-1075.
|
20. |
张向鑫, 马瑞雪, 李天友, 等. 整合素β1在髋关节发育不良髋臼软骨退变中的作用. 临床小儿外科杂志, 2009, 8(3) :29-33.
|
21. |
钟清玲, 刘德伍, 刘繁荣, 等. 糖尿病大鼠表皮干细胞及其增殖分化相关蛋白的研究. 中国修复重建外科杂志, 2010, 24(2) :133-137.
|
22. |
Jansen EJ, Emans PJ, Van Rhijn LW, et al. Development of partial-thickness articular cartilage injury in a rabbit model. Clin Orthop Relat Res, 2008, 466(2) :487-494.
|
23. |
王凡, 李爱冬, 羊惠君, 等. 转化生长因子-β对骺软骨细胞增殖和PCNA表达的影响. 华西医大学报, 2000, 31(4) :460-462, 467.
|
24. |
任戈亮, 桂鉴超, 王黎明, 等. Ⅱ型胶原羧基端端肽对骨关节炎早期诊断和病情评估的实验研究. 南京医科大学学报(自然科学版), 2010, 30(5) :653-657.
|