1. |
Augustin G, Antabak A, Davila S. The periosteum. Part 1: Anatomy, histology and molecular biology. Injury, 2007, 38(10): 1115-1130.
|
2. |
Lin Z, Fateh A, Salem DM, et al. Periosteum: biology and applications in craniofacial bone regeneration. J Dent Res, 2014, 93(2): 109-116.
|
3. |
Colno C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res, 2009, 24(2): 274-282.
|
4. |
Ferretti C, Mattioli-Belmonte M. Periosteum derived stem cells for regenerative medicine proposals: Boosting current knowledge. World J Stem Cells, 2014, 6(3): 266-277.
|
5. |
Nakahara K, Haga-Tsujimura M, Iizuka T, et al. Periosteum-Induced Bone Formation by Distraction Osteogenesis: Histologic and Microcomputed Tomography Analysis. Int J Oral Maxillofac Implants, 2016, 31(4): 785-792.
|
6. |
Takushima A, Kitano Y, Harii K. Osteogenic potential of cultured periosteal cells in a distracted bone gap in rabbits. J Surg Res, 1998, 78(1): 68-77.
|
7. |
Hoffman MD, Benoit DS. Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing. Biomaterials, 2015, 52: 426-440.
|
8. |
Yiannakopoulos CK, Kanellopoulos AD, Trovas GP, et al. The biomechanical capacity of the periosteum in intact long bones. Arch Orthop Trauma Surg, 2008, 128(1): 117-120.
|
9. |
拓振合, 赵琳, 王栓科, 等. 组织工程骨膜及脱蛋白骨辅助支架修复兔桡骨大段骨缺损. 中国修复重建外科杂志, 2014, 28(4): 511-516.
|
10. |
Chang H, Knothe Tate ML. Concise review: the periosteum: tapping into a reservoir of clinically useful progenitor cells. Stem Cells Transl Med, 2012, 1(6): 480-491.
|
11. |
Hoffman MD, Xie C, Zhang X, et al. The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing. Biomaterials, 2013, 34(35): 8887-8898.
|
12. |
Colnot C, Zhang X, Knothe Tate ML, et al. Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches. J Orthop Res, 2012, 30(12): 1869-1878.
|
13. |
Fujio M, Yamamoto A, Ando Y, et al. Stromal cell-derived factor-1 enhances distraction osteogenesis-mediated skeletal ltissue regeneration through the recruitment of endothelial precursors. Bone, 2011, 49(4): 693-700.
|
14. |
Zhang WB, Zheng LW, Chua DT, et al. Expression of bone morphogenetic protein, vascular endothelial growth factor, and basic fibroblast growth factor in irradiated mandibles during distraction osteogenesis. J Oral Maxillofac Surg, 2011, 69(11): 2860-2871.
|
15. |
van Gastel N, Torrekens S, Roberts SJ, et al. Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. Stem Cells, 2012, 30(11): 2460-2471.
|
16. |
Choi IH, Chung CY, Cho TJ, et al. Angiogenesis and mineralization during distraction osteogenesis. J Korean Med Sci, 2002, 17(4): 435-447.
|
17. |
Casap N, Venezia NB, Wilensky A, et al. VEGF facilitates periosteal distraction-induced osteogenesis in rabbits: a micro-computerized tomography study. Tissue Eng Part A, 2008, 14(2): 247-253.
|
18. |
Hoffman MD, Benoit DS. Emerging ideas: Engineering the periosteum: revitalizing allografts by mimicking autograft healing. Clin Orthop Relat Res, 2013, 471(3): 721-726.
|
19. |
Schmidt BL, Kung L, Jones C, et al. Induced osteogenesis by periosteal distraction. J Oral Maxillofac Surg, 2002, 60(10): 1170-1175.
|
20. |
刘亚, 宋庆高, 尹鑫海, 等. 下颌骨骨膜牵张成骨的实验研究. 遵义医学院学报, 2008, 31(2): 30-32.
|
21. |
任志勇, 李涛, 张维彬, 等. 兔胫骨干骺端骨膜外截骨对延长区成骨作用的影响. 中国矫形外科杂志, 2015, 23(2): 150-155.
|
22. |
黎润光, 邵景范, 魏明发. 机械牵张应力对成骨细胞的影响研究进展. 中国矫形外科杂志, 2006, 14(6): 457-460.
|
23. |
Weyts FA, Bosmans B, Niesing R, et al. Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation. Calcif Tissue Int, 2003, 72(4): 505-512.
|
24. |
Winter LC, Walboomers XF, Bumgardner JD, et al. Intermittent versus continuous stretching effects on osteoblast-like cells in vitro. J Biomed Mater Res A, 2003, 67(4): 1269-1275.
|
25. |
孙溪饶. 牵引速率及频率对牵张成骨的影响. 中国组织工程研究与临床康复, 2010, 14(41): 7727-7730.
|
26. |
Choi IH, Shim JS, Seong SC, et al. Effect of the distraction rate on the activity of the osteoblast lineage in distraction osteogenesis of rat’s tibia. Immunostaining study of the proliferating cell nuclear antigen, osteocalcin, and transglutaminase C. Bull Hosp Jt Dis, 1997, 56(1): 34-40.
|
27. |
Moore DC, Leblanc CW, Müller R, et al. Physiologic weight-bearing increases new vessel formation during distraction osteogenesis: a micro-tomographic imaging study. J Orthop Res, 2003, 21(3): 489-496.
|
28. |
Kesemenli CC, Subasi M, Kaya H, et al. The effects of electromagnetic field on distraction osteogenesis. Yonsei Med J, 2003, 44(3): 385-391.
|
29. |
詹玉林, 侯国柱, 安智全, 等. 兔骨缺损模型中骨膜对骨形态发生蛋白-2 分泌量及骨愈合影响的实验研究. 中华创伤骨科杂志, 2013, 15(10): 884-888.
|
30. |
Issa JP, Nascimento C, Lamano T, et al. Effect of recombinant human bone morphogenetic protein-2 on bone formation in the acute distraction osteogenesis of rat mandibles. Clin Oral Implants Res, 2009, 20(11): 1286-1292.
|