1. |
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015, 136(5): E359-386.
|
2. |
Fan L, Strasser-Weippl K, Li JJ, et al. Breast cancer in China. Lancet Oncology, 2014, 15(7): e279-e289.
|
3. |
Zhang B, Song Q, Zhang B, et al. A 10-year (1999~2008) retrospective multi-center study of breast cancer surgical management in various geographic areas of China. Breast, 2013, 22(5): 676-681.
|
4. |
Howe CL. Coated glass and vicryl microfibers as artificial axons. Cells Tissues Organs, 2006, 183(4): 180-194.
|
5. |
Chen G, Ushida T, Tateishi T. A hybrid network of synthetic polymer mesh and collagen sponge. Chemical Communications, 2000, 16(16): 1505-1506.
|
6. |
Haynes DF, Kreithen JC. Vicryl mesh in expander/implant breast reconstruction: long-term follow-up in 38 patients. Plast Reconstr Surg, 2014, 134(5): 892-899.
|
7. |
Meyer Ganz O, Tobalem M, Perneger T, et al. Risks and benefits of using an absorbable mesh in one-stage immediate breast reconstruction: a comparative study. Plast Reconstr Surg, 2015, 135(3): 498e-507e.
|
8. |
Tessler O, Reish RG, Maman DY, et al. Beyond biologics: absorbable mesh as a low-cost, low-complication sling for implant-based breast reconstruction. Plast Reconstr Surg, 2014, 133(2): 90e-99e.
|
9. |
Mortarino E. Method for making a knitted mesh: US, 8746014B2[P]. 2014-07-10.
|
10. |
Jacobs JM, Salzberg CA. Implant-based breast reconstruction with meshes and matrices: biological vs synthetic. Br J Hosp Med (Lond), 2015, 76(4): 211-216.
|
11. |
Dieterich M, Faridi A. Biological Matrices and Synthetic Meshes Used in Implant-based Breast Reconstruction-a Review of Products Available in Germany. Geburtshilfe Frauenheilkd, 2013, 73(11): 1100-1106.
|
12. |
Scheidbach H, Tannapfel A, Schmidt U, et al. Influence of titanium coating on the biocompatibility of a heavyweight polypropylene mesh. An animal experimental model. Eur Surg Res, 2004, 36(5): 313-317.
|
13. |
Loustau HD, Mayer HF. Polyglactin Mesh in Immediate Prosthetic Breast Reconstruction: The Ensured Subpectoral Pocket (ESP). Breast Reconstruction. Switzerland: Springer International Publishing, 2016: 383-389.
|
14. |
Dieterich M, Paepke S, Zwiefel K, et al. Implant-based breast reconstruction using a titanium-coated polypropylene mesh (TiLOOP Bra): a multicenter study of 231 cases. Plast Reconstr Surg, 2013, 132(1): 8e-19e.
|
15. |
Dieterich M, Dieterich H, Timme S, et al. Using a titanium-coated polypropylene mesh (TiLOOP(®) Bra) for implant-based breast reconstruction: case report and histological analysis. Arch Gynecol Obstet, 2012, 286(1): 273-276.
|
16. |
Casella D, Calabrese C, Bianchi S, et al. Subcutaneous Tissue Expander Placement with Synthetic Titanium-Coated Mesh in Breast Reconstruction: Long-term Results. Plast Reconstr Surg Glob Open, 2015, 3(12): e577.
|
17. |
Gruber RP, Kahn RA, Lash H, et al. Breast reconstruction following mastectomy: a comparison of submuscular and subcutaneous techniques. Plast Reconstr Surg, 1981, 67(3): 312-317.
|
18. |
Hammond DC, Schmitt WP, O’Connor EA. Treatment of breast animation deformity in implant-based reconstruction with pocket change to the subcutaneous position. Plast Reconstr Surg, 2015, 135(6):1540-1544.
|
19. |
Kobraei EM, Cauley R, Gadd M, et al. Avoiding Breast Animation Deformity with Pectoralis-Sparing Subcutaneous Direct-to-Implant Breast Reconstruction. Plast Reconstr Surg Glob Open, 2016, 4(5): e708.
|
20. |
Becker H, Lind JG 2nd, Hopkins EG. Immediate Implant-based Prepectoral Breast Reconstruction Using a Vertical Incision. Plast Reconstr Surg Glob Open, 2015, 3(6): e412.
|
21. |
Bernini M, Calabrese C, Cecconi L, et al. Subcutaneous Direct-to-Implant Breast Reconstruction: Surgical, Functional, and Aesthetic Results after Long-Term Follow-Up. Plast Reconstr Surg Glob Open, 2015, 3(12): e574.
|
22. |
Caputo GG, Marchetti A, Dalla Pozza E, et al. Skin-Reduction Breast Reconstructions with Prepectoral Implant. Plast Reconstr Surg, 2016, 137(6): 1702-1705.
|
23. |
Casella D, Bernini M, Bencini L, et al. TiLoop® Bra mesh used for immediate breast reconstruction: comparison of retropectoral and subcutaneous implant placement in a prospective single-institution series. Eur J Plast Surg, 2014, 37(11): 599-604.
|
24. |
Nahabedian MY. Discussion: Treatment of capsular contracture using complete implant coverage by acellular dermal matrix: a novel technique. Plast Reconstr Surg, 2013, 132(3): 530-531.
|
25. |
Reitsamer R, Peintinger F. Prepectoral implant placement and complete coverage with porcine acellular dermal matrix: a new technique for direct-to-implant breast reconstruction after nipple-sparing mastectomy. J Plast Reconstr Aesthet Surg, 2015, 68(2): 162-167.
|
26. |
Logan Ellis H, Asaolu O, Nebo V, et al. Biological and synthetic mesh use in breast reconstructive surgery: a literature review. World J Surg Oncol, 2016, 14: 121.
|
27. |
Pérez-Köhler B, BayonY, Bellón JM. Mesh Infection and Hernia Repair: A Review. Surg Infect (Larchmt), 2016, 17(2): 124-137.
|
28. |
Labadie EL, Glover D. Physiopathogenesis of subdural hematomas. Part 1: Histological and biochemical comparisons of subcutaneous hematoma in rats with subdural hematoma in man. J Neurosurgery, 1976, 45(4): 382-392.
|
29. |
Moyer KE, Ehrlich HP. Capsular contracture after breast reconstruction: collagen fiber orientation and organization. Plast Reconstr Surg, 2013, 131(4): 680-685.
|
30. |
Leong M, Basu CB, Hicks MJ. Further evidence that human acellular dermal matrix decreases inflammatory markers of capsule formation in implant-based breast reconstruction. Aesthet Surg J, 2015, 35(1): 40-47.
|
31. |
Basu CB, Leong M, Hicks MJ. Acellular cadaveric dermis decreases the inflammatory response in capsule formation in reconstructive breast surgery. Plast Reconstr Surg, 2010, 126(6): 1842-1847.
|
32. |
Komorowska-Timek E, Oberg KC, Timek TA, et al. The effect of AlloDerm envelopes on periprosthetic capsule formation with and without radiation. Plast Reconstr Surg, 2009, 123(3): 807-816.
|
33. |
Becker H, Lind JG 2nd. The use of synthetic mesh in reconstructive, revision, and cosmetic breast surgery. Aesthetic Plastic Surg, 2013, 37(5): 914-921.
|
34. |
Dieterich M, Reimer T, Dieterich H, et al. A short-term follow-up of implant based breast reconstruction using a titanium-coated polypropylene mesh (TiLoop(®) Bra)[J]. Eur J Surg Oncol, 2012, 38(12):1225-1230.
|
35. |
Sharma S,Van Barsel S, Barry M, et al. De novo experience of resorbable woven mesh in immediate breast reconstruction post-mastectomy. Eur J Plast Surg, 2017,40(1): 17-22.
|
36. |
Dieterich M, Angres J, Angrit S, et al. Patient-Report Satisfaction and Health-Related Quality of Life in TiLOOP® Bra-Assisted or Implant-Based Breast Reconstruction Alone. Aesthetic Plast Surg, 2015, 39(4): 523-533.
|
37. |
Rodriguez-Unda N, Leiva S, Cheng HT, et al. Low incidence of complications using polyglactin 910 (Vicryl) mesh in breast reconstruction: A systematic review. J Plast Reconstr Aesthet Surg, 2015, 68(11): 1543-1549.
|
38. |
Kim HO, Sang IH, Yom CK, et al. The Use of Absorbable Surgical Mesh after Partial Mastectomy for Improving the Cosmetic Outcome. Journal of Breast Cancer, 2009, 12(3):151-155.
|
39. |
Rietjens M, De Lorenzi F, Venturino M, et al. The suspension technique to avoid the use of tissue expanders in breast reconstruction. Ann Plast Surg, 2005, 54(5): 467-470.
|
40. |
Pusic AL, Klassen AF, Scott AM, et al. Development of a new patient-reported outcome measure for breast surgery: the BREAST-Q. Plast Reconstr Surg, 2009, 124(2): 345-353.
|