1. |
Hench LL, Splinter RJ, Allen WC, et al. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res, 1971, 5(6):117-141.
|
2. |
Wilson J, Pigott GH, Schoen FJ, et al. Toxicology and biocompatibility of bioglasses. J Biomed Mater Res, 1981, 15(6): 805-817.
|
3. |
Kokubo T, Shigematsu M, Nagashima Y, et al. Apatite- and wollastonite-containg glass-ceramics for prosthetic application. Bull Inst Chem Res Kyoto Univ, 1982, 60(3-4): 260-268.
|
4. |
Montazerian M, Zanotto ED. History and trends of bioactive glass-ceramics. J Biomed Mater Res Part A, 2015, 104(5):1231-1249.
|
5. |
Wilson J, Low SB. Bioactive ceramics for periodontal treatment: comparative studies in the Patus monkey. J Appl Biomater, 1992, 3(2):123-129.
|
6. |
Xynos ID, Edgar AJ, Buttery LD, et al. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor Ⅱ mRNA expression and protein synthesis. Biochem Biophys Res Commun, 2000, 276(2): 461-465.
|
7. |
Ilharreborde B, Morel E, Fitoussi F, et al. Bioactive glass as a bone substitute for spinal fusion in adolescent idiopathic scoliosis: a comparative study with iliac crest autograft. J Pediatr Orthop, 2008, 28(3): 347-351.
|
8. |
Seddighi A, Seddighi AS, Zali AR, et al. Study of the role of nova bone as a filling material in cervical cage in anterior fusion of cervical spine in patients with degenerative cervical disc disease. Global Journal of Health Science, 2011, 170(1): 223-226.
|
9. |
Frantzén J, Rantakokko J, Aro HT, et al. Instrumented spondylodesis in degenerative spondylolisthesis with bioactive glass and autologous bone: a prospective 11-year follow-up. J Spinal Disord Tech, 2011, 24(7): 455-461.
|
10. |
Jones JR. Reprint of: Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 2015, 23: S53-S82.
|
11. |
Crane GM, Ishaug SL, Mikos AG. Bone tissue engineering. Nat Med, 1995, 1(12):1322-1324.
|
12. |
Jones JR. Hierarchical porous scaffolds for bone regeneration//New materials and technologies for healthcare. London: Imperial College Press, 2011: 107-130.
|
13. |
Peitl Filho O, LaTorre GP, Hench LL. Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res, 2015, 30(4): 509-514.
|
14. |
Moimas L, Biasotto M, Lenarda RD, et al. Rabbit pilot study on the resorbability of three-dimensional bioactive glass fibre scaffolds. Acta Biomaterialia, 2006, 2(2): 191-199.
|
15. |
Ghosh SK, Nandi SK, Kundu B, et al. In vivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J Biomed Mater Res B Appl Biomater, 2008, 86(1): 217-227.
|
16. |
Jia W, Lau GY, Huang W, et al. Bioactive Glass for Large Bone Repair. Adv Healthc Mater, 2015, 4(18): 2842-2848.
|
17. |
Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials, 2006, 27(7): 964-973.
|
18. |
Wu ZY, Hill RG, Yue S, et al. Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique. Acta Biomater, 2011, 7(4): 1807-1816.
|
19. |
Fu Q, Saiz E, Tomsia AP. Bioinspired Strong and Highly Porous Glass Scaffolds. Adv Funct Mater, 2011, 21(6): 1058-1063.
|
20. |
Mantsos T, Chatzistavrou X, Roether JA, et al. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(D, L-lactic acid) coatings. Biomed Mater, 2009, 4(5): 055002.
|
21. |
Gomez-Vega JM, Saiz E, Tomsia AP, et al. Novel Bioactive Functionally Graded Coatings on Ti6Al4V. Adv Mater, 2000, 12(12): 894-898.
|
22. |
Moritz N, Rossi S, Vedel E, et al. Implants coated with bioactive glass by CO2-laser, an in vivo study. J Mater Sci Mater Med, 2004, 15(7): 795-802.
|
23. |
Newman SD, Lotfibakhshaiesh N, O’Donnell M, et al. Enhanced osseous implant fixation with strontium-substituted bioactive glass coating. Tissue Eng Part A, 2014, 20(13-14): 1850-1857.
|
24. |
Vitale-Brovarone C, Baino F, Tallia F, et al. Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements. J Mater Sci Mater Med, 2012, 23(10): 2369-2380.
|
25. |
Leach JK, Kaigler D, Wang Z, et al. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials, 2006, 27(17): 3249-3255.
|
26. |
张亚东. 可注射性硼酸盐生物玻璃骨水泥的制备及对骨缺损修复的研究. 上海: 上海交通大学, 2015.
|
27. |
Zhang Y, Xu C, Zhao S, et al. Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model. ACS Appl Mater Interfaces, 2015, 7(4): 2393-2403.
|
28. |
Rahaman MN, Bal BS, Huang W. Review: emerging developments in the use of bioactive glasses for treating infected prosthetic joints. Mater Sci Eng C Mater Biol Appl, 2014, 41: 224-231.
|
29. |
Ragel CV, Vallet-Regí M. In vitro bioactivity and gentamicin release from glass-polymer-antibiotic composites. J Biomed Mater Res, 2000, 51(3): 424-429.
|
30. |
Rivadeneira J, Di Virgilio AL, Audisio MC, et al. Evaluation of antibacterial and cytotoxic effects of nano-sized bioactive glass/collagen composites releasing tetracycline hydrochloride. J Appl Microbiol, 2014, 116(6): 1438-1446.
|
31. |
Jia WT, Zhang X, Luo SH, et al. Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis. Acta Biomater, 2010, 6(3): 812-819.
|
32. |
谢宗平. 生物玻璃载药缓释的实验研究. 上海: 上海交通大学, 2009.
|
33. |
Xia W, Chang J. Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release, 2006, 110(3): 522-530.
|
34. |
周艳玲, 冯新星, 翟万银, 等. 介孔生物玻璃装载和释放抗癌药物表阿霉素的研究. 无机材料学报, 2011, 26(1): 68-72.
|
35. |
Zhu M, Shi JL, He QJ, et al. An emulsification-solvent evaporation route to mesoporous bioactive glass microspheres for bisphosphonate drug delivery. J Mater Sci, 2012, 47(5): 2256-2263.
|
36. |
Wei L, Ke J, Prasadam I, et al. A comparative study of Sr-incorporated mesoporous bioactive glass scaffolds for regeneration of osteopenic bone defects. Osteoporos Int, 2014, 25(8): 2089-2096.
|
37. |
Gérard C, Bordeleau LJ, Barralet J, et al. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials, 2009, 31(5): 824-831.
|
38. |
赵世昌. 含铜硼酸盐生物玻璃支架与纤维对骨缺损与皮肤缺损修复作用的研究. 上海: 上海交通大学, 2015.
|
39. |
Wang H, Zhao S, Xiao W, et al. Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds. Mater Sci Eng C Mater Biol Appl, 2016, 58: 194-203.
|
40. |
Samira J, Saoudi M, Abdelmajid K, et al. Accelerated bone ingrowth by local delivery of Zinc from bioactive glass: oxidative stress status, mechanical property, and microarchitectural characterization in an ovariectomized rat model. Libyan J Med, 2015, 10: 28572.
|