1. |
Langer R, Vacanti J. Advances in tissue engineering. J Pediatr Surg, 2016, 51(1): 8-12.
|
2. |
Kalunian KC. Current advances in therapies for osteoarthritis. Curr Opin Rheumatol, 2016, 28(3): 246-250.
|
3. |
Curry AS, Pensa NW, Barlow AM, et al. Taking cues from the extracellular matrix to design bone-mimetic regenerative scaffolds. Matrix Biol, 2016, 52-54: 397-412.
|
4. |
He X, Feng B, Huang C, et al. Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering. Int J Nanomedicine, 2015, 10: 2089-2099.
|
5. |
Battiston KG, Cheung JW, Jain D, et al. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds. Biomaterials, 2014, 35(15): 4465-4476.
|
6. |
Edwards PK, Ackland T, Ebert JR. Clinical rehabilitation guidelines for matrix-induced autologous chondrocyte implantation on the tibiofemoral joint. J Orthop Sports Phys Ther, 2014, 44(2): 102-119.
|
7. |
Kon E, Filardo G, Di Martino A, et al. ACI and MACI. J Knee Surg, 2012, 25(1): 17-22.
|
8. |
Wang YC, Meng HY, Yuan XL, et al. Fabrication and in vitro evaluation of an articular cartilage extracellular-hydroxyapatite bilayered scaffold with low permeability for interface tissue engineering. BioMedical Engineering Online, 2014, 13: 80.
|
9. |
Yang Q, Peng J, Guo Q, et al. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials, 2008, 29(15): 2378-2387.
|
10. |
鹿亮, 郭全义, 杨启友, 等. 异种关节软骨脱细胞基质支架的免疫反应研究.中国矫形外科杂志, 2010, 18(1): 58-62.
|
11. |
鹿亮, 郭全义, 杨启友, 等. 猪来源关节软骨脱细胞支架的生物安全性研究. 中国医药生物技术, 2010, 3(1): 19-23.
|
12. |
Rowland CR, Colucci LA, Guilak F. Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds. Biomaterials, 2016, 91: 57-72.
|
13. |
Corradetti B, Taraballi F, Minardi S, et al. Chondroitin sulfate immobilized on a biomimetic scaffold modulates inflammation while driving chondrogenesis. Stem Cells Transl Med, 2016, 5(5): 670-682.
|
14. |
Smeriglio P, Lai JH, Yang F, et al. 3D hydrogel scaffolds for articular chondrocyte culture and cartilage generation. J Vis Exp, 2015, (104): 53085.
|
15. |
郑希福. 仿生PLGA/软骨ECM复合取向支架的制备及其软骨组织工程的实验研究. 大连: 大连医科大学, 2011.
|
16. |
Rongen JJ, van Tienen TG, van Bochove B, et al. Biomaterials in search of a meniscus substitute. Biomaterials, 2014, 35(11): 3527-3540.
|
17. |
Karimi A, Navidbakhsh M, Faghihi S. Fabrication and mechanical characterization of a polyvinyl alcohol sponge for tissue engineering applications. Perfusion, 2014, 29(3): 231-237.
|
18. |
Gao Y, Liu S, Huang J, et al. The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. Biomed Res Int, 2014, 2014: 648459.
|
19. |
姚军, 卢世壁, 彭江, 等. 关节软骨细胞外基质源性软骨组织工程取向支架的制备. 中国组织工程研究与临床康复, 2009, 13(3): 432-436.
|
20. |
Haas SJ, Bauer P, Rolfs A, et al. Immunocytochemical characterization of in vitro PKH26-labelled and intracerebrally transplanted neonatal cells. Acta Histochem, 2000, 102(3): 273-280.
|