1. |
Sopyan I, Mel M, Ramesh S, et al. Porous hydroxyapatite for artificial bone applications. Science and Technology of Advanced Materials, 2007, 8(1-2): 116-123.
|
2. |
Mohammad NF, Othman R, FY Yeoh. Controlling the pore characteristics of mesoporous apatite materials: Hydroxyapatite and carbonate apatite. Ceramics International, 2015, 41(9): 10624-10633.
|
3. |
Ohji T, Fukushima M. Macro-porous ceramics: processing and properties. International Materials Reviews, 2012, 57(2): 115-131.
|
4. |
Hammel EC, Ighodaro OLR, Okoli OI. Processing and properties of advanced porous ceramics: An application based review. Ceramics International, 2014, 40(10): 15351-15370.
|
5. |
Reinares-Fisac D, Veintemillas-Verdaguer S, Fernández-Díaz L. Conversion of biogenic aragonite into hydroxyapatite scaffolds in boiling solutions. Cryst Eng Comm, 2017, 19(1): 110-116.
|
6. |
彭雅, 覃裕, 顾春松, 等. 骨髓间充质干细胞复合海螵蛸支架的部分生物学安全性评估. 中国生物医学工程学报, 2016, 35(5): 555-561.
|
7. |
Li HM, Zhou W, Yan XR, et al. Osteoinductive nanohydroxyapatite bone substitute prepared via in situ hydrothermal transformation of cuttlefish bone. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2015, 103(4): 816-824.
|
8. |
Kim BS, Kang HJ, Yang SS, et al. Comparison of in vitro and in vivo bioactivity: cuttlefish-bone-derived hydroxyapatite and synthetic hydroxyapatite granules as a bone graft substitute. Biomedical Materials, 2014, 9(2): 025004.
|
9. |
Kim BS, Yang SS, Yoon JH, et al. Enhanced bone regeneration by silicon-substituted hydroxyapatite derived from cuttlefish bone. Clinical Oral Implants Research, 2017, 28(1): 49-56.
|
10. |
Ducheyne P, Radin S, King L. The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution. Journal of Biomedical Materials Research, 1993, 27(1): 25-34.
|
11. |
Lin KL, Xia LG, Gan JB, et al. Tailoring the nanostructured surfaces of hydroxyapatite bioceramics to promote protein adsorption, osteoblast growth, and osteogenic differentiation. ACS Applied Materials & Interfaces, 2013, 5(16): 8008-8017.
|
12. |
Arjonen A, Kaukonen R, Ivaska J, et al. Filopodia and adhesion in cancer cell motility. Cell Adhesion & Migration, 2011, 5(5): 421-430.
|
13. |
Choi CH, Hagvall SH, Wu BM, et al. Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials, 2007, 28(9): 1672-1679.
|
14. |
Gupton SL, Gertler FB. Filopodia: the fingers that do the walking. Science’s STKE: 2007, 2007, (400): re5.
|
15. |
Onuma K. Recent research on pseudobiological hydroxyapatite crystal growth and phase transition mechanisms. Progress in Crystal Growth and Characterization of Materials, 2006, 52(3): 223-245.
|
16. |
Nocerino N, Fulgione A, Iannaccone M, et al. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals. International Journal of Nanomedicine, 2014, 9: 1175-1184.
|
17. |
Yang Y, Wu QZ, Wang M, et al. Hydrothermal synthesis of hydroxyapatite with different morphologies: Influence of supersaturation of the reaction system. Crystal Growth & Design, 2014, 14(9): 4864-4871.
|
18. |
Cai YR, Jin J, Mei DP, et al. Effect of silk sericin on assembly of hydroxyapatite nanocrystals into enamel prism-like structure. Journal of Materials Chemistry, 2009, 19(32): 5751-5758.
|
19. |
Ohta K, Kikuchi M, Tanaka J, et al. Synthesis of c axes oriented hydroxyapatite aggregate. Chemistry Letters, 2002, 31(9): 894-895.
|
20. |
Grinnell F, Feld M, Minter D. Fibroblast adhesion to fibrinogen and fibrin substrata: requirement for cold-insoluble globulin (plasma fibronectin). Cell, 1980, 19(2): 517-525.
|
21. |
Kilpadi KL, Chang PL, Bellis SL. Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. Journal of Biomedical Materials Research Part A, 2001, 57(2): 258-267.
|
22. |
Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature, 2003, 423(6937): 337-342.
|