1. |
Belanger K, Dinis TM, Taourirt S, et al. Recent strategies in tissue engineering for guided peripheral nerve regeneration. Macromol Biosci, 2016, 16(4): 472-481.
|
2. |
Kim JK, Koh YD, Kim JO, et al. Development of a decellularization method to produce nerve allografts using less invasive detergents and hyper/hypotonic solutions. J Plast Reconstr Aesthetic Surg, 2016, 69(12): 1690-1696.
|
3. |
Boriani F, Fazio N, Fotia C, et al. A novel technique for decellularization of allogenic nerves and in vivo study of their use for peripheral nerve reconstruction. J Biomed Mater Res A, 2017, 105(8): 2228-2240.
|
4. |
Kaiser R, Ullas G, Havránek P, et al. Current concepts in peripheral nerve injury repair. Acta Chir Plast, 2017, 59(2): 85-91.
|
5. |
Anderson M, Shelke NB, Manoukian OS, et al. Peripheral nerve regeneration strategies: electrically stimulating polymer based nerve growth conduits. Crit Rev Biomed Eng, 2015, 43(2-3): 131-159.
|
6. |
尹刚, 刘蔡钺, 林耀发, 等. 脂肪干细胞来源外泌体对周围神经损伤后再生作用的实验研究. 中国修复重建外科杂志, 2018, 32(12): 1592-1596.
|
7. |
Xue C, Zhu H, Tan D, et al. Electrospun silk fibroin-based neural scaffold for bridging a long sciatic nerve gap in dogs. J Tissue Eng Regen Med, 2018, 12(2): e1143-e1153.
|
8. |
Ateh DD, Navsaria HA, Vadgama P. Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface, 2006, 3(11): 741-752.
|
9. |
Lee JY, Bashur CA, Goldstein AS, et al. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 2009, 30(26): 4325-4335.
|
10. |
Bandala C, Terán-Melo JL, Anaya-Ruiz M, et al. Effect of botulinum neurotoxin type A (BoNTA) on the morphology and viability of 3T3 murine fibroblasts. Int J Clin Exp Pathol, 2015, 8(8): 9458-9462.
|
11. |
Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials, 2014, 35(24): 6143-6156.
|
12. |
Lutkenhaus J. A radical advance for conducting polymers. Science, 2018, 359(6382): 1334-1335.
|
13. |
Baniasadi H, Ramazani SAA, Mashayekhan S. Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Int J Biol Macromol, 2015, 74: 360-366.
|
14. |
Liao J, Zhu Y, Yin Z, et al. Tuning nano-architectures and improving bioactivity of conducting polypyrrole coating on bone implants by incorporating bone-borne small molecules. J Mater Chem B, 2014, 2014(2): 7872-7876.
|
15. |
Wang C, Jia Y, Yang W, et al. Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits. J Biomed Mater Res A, 2018, 106(7): 2070-2077.
|
16. |
Jacobsen MM, Li D, Rim NG, et al. Silk-fibronectin protein alloy fibres support cell adhesion and viability as a high strength, matrix fibre analogue. Sci Rep, 2017, 7: 45653.
|
17. |
Liao J, Zhu Y, Yin Z, et al. Tuning nano-architectures and improving bioactivity of conducting polypyrrole coating on bone implants by incorporating bone-borne small molecules. J Mater Chem B, 2014, 2014(2): 7872-7876.
|
18. |
Bhattacharjee P, Kundu B, Naskar D, et al. Potential of inherent RGD containing silk fibroin-poly (capital JE, Ukrainian-caprolactone) nanofibrous matrix for bone tissue engineering. Cell Tissue Res, 2016, 363(2): 525-540.
|
19. |
Zhang L, Liu X, Li G, et al. Tailoring degradation rates of silk fibroin scaffolds for tissue engineering. J Biomed Mater Res A, 2019, 107(1): 104-113.
|
20. |
焦海山, 曹萍, 陈颖, 等. 纳米聚吡咯/甲壳素复合膜的制备及其生物相容性观察. 中国修复重建外科杂志, 2018, 32(8): 1081-1087.
|
21. |
Poggetti A, Battistini P, Parchi PD, et al. How to direct the neuronal growth process in peripheral nerve regeneration: future strategies for nanosurfaces scaffold and magnetic nanoparticles. Surg Technol Int, 2017, 30: 458-461.
|
22. |
Poggetti A, Battistini P, Paolo PD. Nanosurfaces scaffold and magnetic nanoparticles to direct the neuronal growth process: future strategies for peripheral nerve regeneration. J Orthop Case Rep, 2016, 6(1): 3-4.
|
23. |
Leigh BL, Truong K, Bartholomew R, et al. Tuning surface and topographical features to investigate competitive guidance of spiral ganglion neurons. ACS Appl Mater Interfaces, 2017, 9(37): 31488-31496.
|
24. |
Li S, Kuddannaya S, Chuah YJ, et al. Combined effects of multi-scale topographical cues on stable cell sheet formation and differentiation of mesenchymal stem cells. Biomater Sci, 2017, 5(10): 2056-2067.
|