- 1. West China School of Medicine, Sichuan University, Chengdu Sichuan, 610041, P.R.China;
- 2. West China School of Stomatology, Sichuan University, Chengdu Sichuan, 610041, P.R.China;
- 3. Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;
Citation: FENG Ziyan, FAN Yifei, GUO Jiusi, FU Weili. Research progress of scaffold materials for tissue engineered meniscus. Chinese Journal of Reparative and Reconstructive Surgery, 2019, 33(8): 1019-1028. doi: 10.7507/1002-1892.201810046 Copy
1. | Abrams GD, Frank RM, Gupta AK, et al. Trends in meniscus repair and meniscectomy in the United States, 2005-2011. Am J Sports Med, 2013, 41(10): 2333-2339. |
2. | Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater, 2017, 3(3): 278-314. |
3. | Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol, 2012, 30(10): 546-554. |
4. | Aufderheide AC, Athanasiou KA. Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus. Tissue Eng, 2005, 11(7-8): 1095-1104. |
5. | Yang X, Bakaic E, Hoare T, et al. Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromolecules, 2013, 14(12): 4447-4455. |
6. | Beatty MW, Ojha AK, Cook JL, et al. Small intestinal submucosa versus salt-extracted polyglycolic acid-poly-L-lactic acid: a comparison of neocartilage formed in two scaffold materials. Tissue Eng, 2002, 8(6): 955-968. |
7. | Stapleton TW, Ingram J, Fisher J, et al. Investigation of the regenerative capacity of an acellular porcine medial meniscus for tissue engineering applications. Tissue Eng Part A, 2011, 17(1-2): 231-242. |
8. | Puetzer JL, Koo E, Bonassar LJ. Induction of fiber alignment and mechanical anisotropy in tissue engineered menisci with mechanical anchoring. J Biomech, 2015, 48(8): 1436-1443. |
9. | Chen WY, Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen, 1999, 7(2): 79-89. |
10. | Sarasua JR, López-Rodríguez N, Zuza E, et al. Crystallinity assessment and in vitro cytotoxicity of polylactide scaffolds for biomedical applications. J Mater Sci Mater Med, 2011, 22(11): 2513-2523. |
11. | Oda S, Otsuki S, Kurokawa Y, et al. A new method for meniscus repair using type Ⅰ collagen scaffold and infrapatellar fat pad. J Biomater Appl, 2015, 29(10): 1439-1448. |
12. | Whitehouse MR, Howells NR, Parry MC, et al. Repair of torn avascular meniscal cartilage using undifferentiated autologous mesenchymal stem cells: from in vitro optimization to a first-in-human study. Stem Cells Transl Med, 2017, 6(4): 1237-1248. |
13. | Zitnay JL, Reese SP, Tran G, et al. Fabrication of dense anisotropic collagen scaffolds using biaxial compression. Acta Biomater, 2018, 65: 76-87. |
14. | Heo J, Koh RH, Shim W, et al. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering. Drug Deliv Transl Res, 2016, 6(2): 148-158. |
15. | Zellner J, Hierl K, Mueller M, et al. Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone. J Biomed Mater Res B Appl Biomater, 2013, 101(7): 1133-1142. |
16. | Gosline JM, Guerette PA, Ortlepp CS, et al. The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol, 1999, 202(Pt 23): 3295-3303. |
17. | Harkin DG, Chirila TV. Silk fibroin in ocular surface reconstruction: what is its potential as a biomaterial in ophthalmics? Future Med Chem, 2012, 4(17): 2145-2147. |
18. | Gruchenberg K, Ignatius A, Friemert B, et al. In vivo performance of a novel silk fibroin scaffold for partial meniscal replacement in a sheep model. Knee Surg Sports Traumatol Arthrosc, 2015, 23(8): 2218-2229. |
19. | Pillai MM, Gopinathan J, Indumathi B, et al. Silk-PVA hybrid nanofibrous scaffolds for enhanced primary human meniscal cell proliferation. J Membr Biol, 2016, 249(6): 813-822. |
20. | Pillai MM, Gopinathan J, Kumar RS, et al. Tissue engineering of human knee meniscus using functionalized and reinforced Silk-PVA composite 3D scaffolds: Understanding the in vitro and in vivo behaviour. Biomed Mater Res Part A, 2018, 106(6): 1722. |
21. | Iannace S, Ambrosio L, Nicolais L, et al. Thermomechanical properties of hyaluronic acid-derived products. Journal of Materials Science: Materials in Medicine, 1992, 3: 59-64. |
22. | Brix MO, Stelzeneder D, Chiari C, et al. Treatment of full-thickness chondral defects with hyalograft C in the knee: long-term results. Am J Sports Med, 2014, 42(6): 1426-1432. |
23. | Erggelet C, Endres M, Neumann K, et al. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res, 2009, 27(10): 1353-1360. |
24. | Koller U, Nehrer S, Vavken P, et al. Polyethylene terephthalate (PET) enhances chondrogenic differentiation of ovine meniscocytes in a hyaluronic acid/polycaprolactone scaffold in vitro. Int Orthop, 2012, 36(9): 1953-1960. |
25. | Murakami T, Otsuki S, Nakagawa K, et al. Establishment of novel meniscal scaffold structures using polyglycolic and poly-l-lactic acids. J Biomater Appl, 2017, 32(2): 150-161. |
26. | Warnock JJ, Fox DB, Stoker AM, et al. Culture of equine fibroblast-like synoviocytes on synthetic tissue scaffolds towards meniscal tissue engineering: a preliminary cell-seeding study. PeerJ, 2014, 2: e353. |
27. | Baek J, Chen X, Sovani S, et al. Meniscus tissue engineering using a novel combination of electrospun scaffolds and human meniscus cells embedded within an extracellular matrix hydrogel. J Orthop Res, 2015, 33(4): 572-583. |
28. | Zhu WH, Wang YB, Wang L, et al. Effects of canine myoblasts expressing human cartilage-derived morphogenetic protein-2 on the repair of meniscal fibrocartilage injury. Mol Med Rep, 2014, 9(5): 1767-1772. |
29. | Kang SW, Son SM, Lee JS, et al. Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model. Journal of Biomedical Materials Research Part A, 2010, 77A(4): 659-671. |
30. | Gu Y, Zhu W, Hao Y, et al. Repair of meniscal defect using an induced myoblast-loaded polyglycolic acid mesh in a canine model. Exp Ther Med, 2012, 3(2): 293-298. |
31. | Gu Y, Chen P, Yang Y, et al. Chondrogenesis of myoblasts in biodegradable poly-lactide-co-glycolide scaffolds. Mol Med Rep, 2013, 7(3): 1003-1009. |
32. | Kwak HS, Nam J, Lee JH, et al. Meniscal repair in vivo using human chondrocyte-seeded PLGA mesh scaffold pretreated with platelet-rich plasma. J Tissue Eng Regen Med, 2017, 11(2): 471-480. |
33. | Shin YS, Lee HN, Sim HB, et al. Polyurethane meniscal scaffolds lead to better clinical outcomes but worse articular cartilage status and greater absolute meniscal extrusion. Knee Surg Sports Traumatol Arthrosc, 2018, 26(8): 2227-2238. |
34. | Bouyarmane H, Beaufils P, Pujol N, et al. Polyurethane scaffold in lateral meniscus segmental defects: Clinical outcomes at 24 months follow-up. Orthop Traumatol Surg Res, 2014, 100(1): 153-157. |
35. | Schüttler KF, Haberhauer F, Gesslein M, et al. Midterm follow-up after implantation of a polyurethane meniscal scaffold for segmental medial meniscus loss: maintenance of good clinical and MRI outcome. Knee Surg Sports Traumatol Arthrosc, 2016, 24(5): 1478-1484. |
36. | Schüttler KF, Pöttgen S, Getgood A, et al. Improvement in outcomes after implantation of a novel polyurethane meniscal scaffold for the treatment of medial meniscus deficiency. Knee Surg Sports Traumatol Arthrosc, 2015, 23(7): 1929-1935. |
37. | Faivre B, Bouyarmane H, Lonjon G, et al. Actifit® scaffold implantation: Influence of preoperative meniscal extrusion on morphological and clinical outcomes. Orthop Traumatol Surg Res, 2015, 101(6): 703-708. |
38. | Koch M, Achatz FP, Lang S, et al. Tissue engineering of large full-size meniscus defects by a polyurethane scaffold: accelerated regeneration by mesenchymal stromal cells. Stem Cells Int, 2018, 2018: 8207071. |
39. | Zhang ZZ, Wang SJ, Zhang JY, et al. 3D-printed poly (ε-caprolactone) scaffold augmented with mesenchymal stem cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model. Am J Sports Med, 2017, 45(7): 1497-1511. |
40. | Kim CH, Khil MS, Kim HY, et al. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J Biomed Mater Res B Appl Biomater, 2006, 78(2): 283-290. |
41. | 沈师, 陈明学, 高爽, 等. 3D打印制备聚己内酯/Ⅰ型胶原组织工程半月板支架及其理化特性的研究. 中国修复重建外科杂志, 2018, 32(9): 1205-1210. |
42. | Gopinathan J, Pillai MM, Sahanand KS, et al. Synergistic effect of electrical conductivity and biomolecules on human meniscal cell attachment, growth, and proliferation in poly-ε-caprolactone nanocomposite scaffolds. Biomed Mater, 2017, 12(6): 065001. |
43. | Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res, 2017, 5: 17014. |
44. | Heiligenstein S, Cucchiarini M, Laschke MW, et al. Evaluation of nonbiomedical and biomedical grade alginates for the transplantation of genetically modified articular chondrocytes to cartilage defects in a large animal model in vivo. J Gene Med, 2011, 13(4): 230-242. |
45. | Rey-Rico A, Klich A, Cucchiarini M, et al. Biomedical-grade, high mannuronic acid content (BioMVM) alginate enhances the proteoglycan production of primary human meniscal fibrochondrocytes in a 3-D microenvironment. Sci Rep, 2016, 6: 28170. |
46. | Sun JY, Zhao X, Illeperuma WR, et al. Highly stretchable and tough hydrogels. Nature, 2012, 489(7414): 133-136. |
47. | Bakarich SE, Gorkin R 3rd, in het Panhuis M, et al. Three-dimensional printing fiber reinforced hydrogel composites. ACS Appl Mater Interfaces, 2014, 6(18): 15998-16006. |
48. | Almeida HV, Sathy BN, Dudurych I, et al. Anisotropic shape-memory alginate scaffolds functionalized with either type Ⅰor type Ⅱ collagen for cartilage tissue engineering. Tissue Eng Part A, 2017, 23(1-2): 55-68. |
49. | Deprés-Tremblay G, Chevrier A, Tran-Khanh N, et al. Chitosan inhibits platelet-mediated clot retraction, increases platelet-derived growth factor release, and increases residence time and bioactivity of platelet-rich plasma in vivo. Biomed Mater, 2017, 13(1): 015005. |
50. | Shive MS, Stanish WD, McCormack R, et al. BST-CarGel® Treatment Maintains Cartilage Repair Superiority over Microfracture at 5 Years in a Multicenter Randomized Controlled Trial. Cartilage, 2015, 6(2): 62-72. |
51. | Sarem M, Moztarzadeh F, Mozafari M, et al. Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human meniscus tissue. Mater Sci Eng C Mater Biol Appl, 2013, 33(8): 4777-4785. |
52. | Moradi L, Vasei M, Dehghan MM, et al. Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: in vivo study. Biomaterials, 2017, 126: 18-30. |
53. | Narita A, Takahara M, Sato D, et al. Biodegradable gelatin hydrogels incorporating fibroblast growth factor 2 promote healing of horizontal tears in rabbit meniscus. Arthroscopy, 2012, 28(2): 255-263. |
54. | Sasaki H, Rothrauff BB, Alexander PG, et al. In vitro repair of meniscal radial tear with hydrogels seeded with adipose stem cells and TGF-β3. Am J Sports Med, 2018, 46(10): 2402-2413. |
55. | Rothrauff BB, Shimomura K, Gottardi R, et al. Anatomical region-dependent enhancement of 3-dimensional chondrogenic differentiation of human mesenchymal stem cells by soluble meniscus extracellular matrix. Acta Biomater, 2017, 49: 140-151. |
56. | Grogan SP, Chung PH, Soman P, et al. Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomater, 2013, 9(7): 7218-7226. |
57. | Silva MA, Leite YKC, de Carvalho CES, et al. Behavior and biocompatibility of rabbit bone marrow mesenchymal stem cells with bacterial cellulose membrane. PeerJ, 2018, 6: e4656. |
58. | Shao W, Wu J, Liu H, et al. Novel bioactive surface functionalization of bacterial cellulose membrane. Carbohydr Polym, 2017, 178: 270-276. |
59. | Palaninathan V, Raveendran S, Rochani AK, et al. Bioactive bacterial cellulose sulfate electrospun nanofibers for tissue engineering applications. J Tissue Eng Regen Med, 2018, 12(7): 1634-1645. |
60. | Cook JL, Tomlinson JL, Kreeger JM, et al. Induction of meniscal regeneration in dogs using a novel biomaterial. Am J Sports Med, 1999, 27(5): 658-665. |
61. | Cook JL, Fox DB, Malaviya P, et al. Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med, 2006, 34(1): 32-42. |
62. | Gastel JA, Muirhead WR, Lifrak JT, et al. Meniscal tissue regeneration using a collagenous biomaterial derived from porcine small intestine submucosa. Arthroscopy, 2001, 17(2): 151-159. |
63. | Tan Y, Zhang Y, Pei M. Meniscus reconstruction through coculturing meniscus cells with synovium-derived stem cells on small intestine submucosa—a pilot study to engineer meniscus tissue constructs. Tissue Eng Part A, 2010, 16(1): 67-79. |
64. | Warnock JJ, Spina J, Bobe G, et al. Culture of canine synoviocytes on porcine intestinal submucosa scaffolds as a strategy for meniscal tissue engineering for treatment of meniscal injury in dogs. Vet J, 2014, 199(1): 49-56. |
65. | Abdelgaied A, Stanley M, Galfe M, et al. Comparison of the biomechanical tensile and compressive properties of decellularised and natural porcine meniscus. J Biomech, 2015, 48(8): 1389-1396. |
66. | Yamasaki T, Deie M, Shinomiya R, et al. Meniscal regeneration using tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow. J Biomed Mater Res A, 2005, 75(1): 23-30. |
67. | Yamasaki T, Deie M, Shinomiya R, et al. Transplantation of meniscus regenerated by tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow. Artif Organs, 2008, 32(7): 519-524. |
68. | Yuan Z, Liu S, Hao C, et al. AMECM/DCB scaffold prompts successful total meniscus reconstruction in a rabbit total meniscectomy model. Biomaterials, 2016, 111: 13-26. |
69. | Gao S, Guo W, Chen M, et al. Fabrication and characterization of electrospun nanofibers composed of decellularized meniscus extracellular matrix and polycaprolactone for meniscus tissue engineering. Journal of Materials Chemistry B, 2017, 5: 2273-2285. |
70. | Gao S, Chen M, Wang P, et al. An electrospun fiber reinforced scaffold promotes total meniscus regeneration in rabbit meniscectomy model. Acta Biomater, 2018, 73: 127-140. |
71. | 贺唯, 樊瑜波, 李晓明. 骨修复材料活性机制和应用的最新研究进展. 中国修复重建外科杂志, 2018, 32(9): 1107-1115. |
72. | Kremer A, Ribitsch I, Reboredo J, et al. Three-dimensional coculture of meniscal cells and mesenchymal stem cells in collagen type Ⅰ hydrogel on a small intestinal matrix-a pilot study toward equine meniscus tissue engineering. Tissue Eng Part A, 2017, 23(9-10): 390-402. |
73. | Wang Y, Yuan X, Yu K, et al. Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration. Biomaterials, 2018, 171: 118-132. |
74. | Sittinger M, Bujia J, Minuth WW, et al. Engineering of cartilage tissue using bioresorbable polymer carriers in perfusion culture. Biomaterials, 1994, 15(6): 451-456. |
75. | Patel JM, Ghodbane SA, Brzezinski A, et al. Tissue-engineered total meniscus replacement with a fiber-reinforced scaffold in a 2-year ovine model. Am J Sports Med, 2018, 46(8): 1844-1856. |
76. | Halili AN, Hasirci N, Hasirci V. A multilayer tissue engineered meniscus substitute. J Mater Sci Mater Med, 2014, 25(4): 1195-1209. |
77. | Johnson T, Bahrampourian R, Patel A, et al. Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens. Biomed Mater Eng, 2010, 20(2): 107-118. |
78. | Liao CJ, Chen CF, Chen JH, et al. Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J Biomed Mater Res, 2002, 59(4): 676-681. |
79. | Mooney DJ, Baldwin DF, Suh NP, et al. Novel approach to fabricate porous sponges of poly (D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials, 1996, 17(14): 1417-1422. |
80. | Dehghani F, Annabi N. Engineering porous scaffolds using gas-based techniques. Curr Opin Biotechnol, 2011, 22(5): 661-666. |
81. | Nam YS, Yoon JJ, Park TG. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res, 2015, 53(1): 1-7. |
82. | Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng, 2001, 7(1): 23-33. |
83. | Whang K, Thomas CH, Healy KE, et al. A novel method to fabricate bioabsorbable scaffolds. Polymer, 2015, 36(4): 837-842. |
84. | Shih YR, Chen CN, Tsai SW, et al. Growth of mesenchymal stem cells on electrospun type Ⅰ collagen nanofibers. Stem Cells, 2006, 24(11): 2391-2397. |
85. | Li WJ, Laurencin CT, Caterson EJ, et al. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J Biomed Mater Res, 2002, 60(4): 613-621. |
86. | Ligon SC, Liska R, Stampfl J, et al. Polymers for 3D printing and customized additive manufacturing. Chem Rev, 2017, 117(15): 10212-10290. |
87. | Ferris CJ, Gilmore KG, Wallace GG, et al. Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol, 2013, 97(10): 4243-4258. |
88. | Ballyns JJ, Cohen DL, Malone E, et al. An optical method for evaluation of geometric fidelity for anatomically shaped tissue-engineered constructs. Tissue Eng Part C Methods, 2010, 16(4): 693-703. |
89. | Rankin M, Noyes FR, Barber-Westin SD, et al. Human meniscus allografts’ in vivo size and motion characteristics: magnetic resonance imaging assessment under weightbearing conditions. Am J Sports Med, 2006, 34(1): 98-107. |
90. | 赵星, 余黎, 陶圣祥, 等. 3D打印技术在严重肱骨远端骨缺损治疗中的应用观察. 中国修复重建外科杂志, 2018, 32(12): 1534-1539. |
91. | Proctor CS, Schmidt MB, Whipple RR, et al. Material properties of the normal medial bovine meniscus. J Orthop Res, 1989, 7(6): 771-782. |
92. | Cameron HU, Macnab I. The structure of the meniscus of the human knee joint. Clin Orthop Relat Res, 1972, 89: 215-219. |
93. | Newman AP, Anderson DR, Daniels AU, et al. Mechanics of the healed meniscus in a canine model. Am J Sports Med, 1989, 17(2): 164-175. |
94. | Zhu W, Chern KY, Mow VC. Anisotropic viscoelastic shear properties of bovine meniscus. Clin Orthop Relat Res, 1994, (306): 34-45. |
- 1. Abrams GD, Frank RM, Gupta AK, et al. Trends in meniscus repair and meniscectomy in the United States, 2005-2011. Am J Sports Med, 2013, 41(10): 2333-2339.
- 2. Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater, 2017, 3(3): 278-314.
- 3. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol, 2012, 30(10): 546-554.
- 4. Aufderheide AC, Athanasiou KA. Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus. Tissue Eng, 2005, 11(7-8): 1095-1104.
- 5. Yang X, Bakaic E, Hoare T, et al. Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromolecules, 2013, 14(12): 4447-4455.
- 6. Beatty MW, Ojha AK, Cook JL, et al. Small intestinal submucosa versus salt-extracted polyglycolic acid-poly-L-lactic acid: a comparison of neocartilage formed in two scaffold materials. Tissue Eng, 2002, 8(6): 955-968.
- 7. Stapleton TW, Ingram J, Fisher J, et al. Investigation of the regenerative capacity of an acellular porcine medial meniscus for tissue engineering applications. Tissue Eng Part A, 2011, 17(1-2): 231-242.
- 8. Puetzer JL, Koo E, Bonassar LJ. Induction of fiber alignment and mechanical anisotropy in tissue engineered menisci with mechanical anchoring. J Biomech, 2015, 48(8): 1436-1443.
- 9. Chen WY, Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen, 1999, 7(2): 79-89.
- 10. Sarasua JR, López-Rodríguez N, Zuza E, et al. Crystallinity assessment and in vitro cytotoxicity of polylactide scaffolds for biomedical applications. J Mater Sci Mater Med, 2011, 22(11): 2513-2523.
- 11. Oda S, Otsuki S, Kurokawa Y, et al. A new method for meniscus repair using type Ⅰ collagen scaffold and infrapatellar fat pad. J Biomater Appl, 2015, 29(10): 1439-1448.
- 12. Whitehouse MR, Howells NR, Parry MC, et al. Repair of torn avascular meniscal cartilage using undifferentiated autologous mesenchymal stem cells: from in vitro optimization to a first-in-human study. Stem Cells Transl Med, 2017, 6(4): 1237-1248.
- 13. Zitnay JL, Reese SP, Tran G, et al. Fabrication of dense anisotropic collagen scaffolds using biaxial compression. Acta Biomater, 2018, 65: 76-87.
- 14. Heo J, Koh RH, Shim W, et al. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering. Drug Deliv Transl Res, 2016, 6(2): 148-158.
- 15. Zellner J, Hierl K, Mueller M, et al. Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone. J Biomed Mater Res B Appl Biomater, 2013, 101(7): 1133-1142.
- 16. Gosline JM, Guerette PA, Ortlepp CS, et al. The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol, 1999, 202(Pt 23): 3295-3303.
- 17. Harkin DG, Chirila TV. Silk fibroin in ocular surface reconstruction: what is its potential as a biomaterial in ophthalmics? Future Med Chem, 2012, 4(17): 2145-2147.
- 18. Gruchenberg K, Ignatius A, Friemert B, et al. In vivo performance of a novel silk fibroin scaffold for partial meniscal replacement in a sheep model. Knee Surg Sports Traumatol Arthrosc, 2015, 23(8): 2218-2229.
- 19. Pillai MM, Gopinathan J, Indumathi B, et al. Silk-PVA hybrid nanofibrous scaffolds for enhanced primary human meniscal cell proliferation. J Membr Biol, 2016, 249(6): 813-822.
- 20. Pillai MM, Gopinathan J, Kumar RS, et al. Tissue engineering of human knee meniscus using functionalized and reinforced Silk-PVA composite 3D scaffolds: Understanding the in vitro and in vivo behaviour. Biomed Mater Res Part A, 2018, 106(6): 1722.
- 21. Iannace S, Ambrosio L, Nicolais L, et al. Thermomechanical properties of hyaluronic acid-derived products. Journal of Materials Science: Materials in Medicine, 1992, 3: 59-64.
- 22. Brix MO, Stelzeneder D, Chiari C, et al. Treatment of full-thickness chondral defects with hyalograft C in the knee: long-term results. Am J Sports Med, 2014, 42(6): 1426-1432.
- 23. Erggelet C, Endres M, Neumann K, et al. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res, 2009, 27(10): 1353-1360.
- 24. Koller U, Nehrer S, Vavken P, et al. Polyethylene terephthalate (PET) enhances chondrogenic differentiation of ovine meniscocytes in a hyaluronic acid/polycaprolactone scaffold in vitro. Int Orthop, 2012, 36(9): 1953-1960.
- 25. Murakami T, Otsuki S, Nakagawa K, et al. Establishment of novel meniscal scaffold structures using polyglycolic and poly-l-lactic acids. J Biomater Appl, 2017, 32(2): 150-161.
- 26. Warnock JJ, Fox DB, Stoker AM, et al. Culture of equine fibroblast-like synoviocytes on synthetic tissue scaffolds towards meniscal tissue engineering: a preliminary cell-seeding study. PeerJ, 2014, 2: e353.
- 27. Baek J, Chen X, Sovani S, et al. Meniscus tissue engineering using a novel combination of electrospun scaffolds and human meniscus cells embedded within an extracellular matrix hydrogel. J Orthop Res, 2015, 33(4): 572-583.
- 28. Zhu WH, Wang YB, Wang L, et al. Effects of canine myoblasts expressing human cartilage-derived morphogenetic protein-2 on the repair of meniscal fibrocartilage injury. Mol Med Rep, 2014, 9(5): 1767-1772.
- 29. Kang SW, Son SM, Lee JS, et al. Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model. Journal of Biomedical Materials Research Part A, 2010, 77A(4): 659-671.
- 30. Gu Y, Zhu W, Hao Y, et al. Repair of meniscal defect using an induced myoblast-loaded polyglycolic acid mesh in a canine model. Exp Ther Med, 2012, 3(2): 293-298.
- 31. Gu Y, Chen P, Yang Y, et al. Chondrogenesis of myoblasts in biodegradable poly-lactide-co-glycolide scaffolds. Mol Med Rep, 2013, 7(3): 1003-1009.
- 32. Kwak HS, Nam J, Lee JH, et al. Meniscal repair in vivo using human chondrocyte-seeded PLGA mesh scaffold pretreated with platelet-rich plasma. J Tissue Eng Regen Med, 2017, 11(2): 471-480.
- 33. Shin YS, Lee HN, Sim HB, et al. Polyurethane meniscal scaffolds lead to better clinical outcomes but worse articular cartilage status and greater absolute meniscal extrusion. Knee Surg Sports Traumatol Arthrosc, 2018, 26(8): 2227-2238.
- 34. Bouyarmane H, Beaufils P, Pujol N, et al. Polyurethane scaffold in lateral meniscus segmental defects: Clinical outcomes at 24 months follow-up. Orthop Traumatol Surg Res, 2014, 100(1): 153-157.
- 35. Schüttler KF, Haberhauer F, Gesslein M, et al. Midterm follow-up after implantation of a polyurethane meniscal scaffold for segmental medial meniscus loss: maintenance of good clinical and MRI outcome. Knee Surg Sports Traumatol Arthrosc, 2016, 24(5): 1478-1484.
- 36. Schüttler KF, Pöttgen S, Getgood A, et al. Improvement in outcomes after implantation of a novel polyurethane meniscal scaffold for the treatment of medial meniscus deficiency. Knee Surg Sports Traumatol Arthrosc, 2015, 23(7): 1929-1935.
- 37. Faivre B, Bouyarmane H, Lonjon G, et al. Actifit® scaffold implantation: Influence of preoperative meniscal extrusion on morphological and clinical outcomes. Orthop Traumatol Surg Res, 2015, 101(6): 703-708.
- 38. Koch M, Achatz FP, Lang S, et al. Tissue engineering of large full-size meniscus defects by a polyurethane scaffold: accelerated regeneration by mesenchymal stromal cells. Stem Cells Int, 2018, 2018: 8207071.
- 39. Zhang ZZ, Wang SJ, Zhang JY, et al. 3D-printed poly (ε-caprolactone) scaffold augmented with mesenchymal stem cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model. Am J Sports Med, 2017, 45(7): 1497-1511.
- 40. Kim CH, Khil MS, Kim HY, et al. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J Biomed Mater Res B Appl Biomater, 2006, 78(2): 283-290.
- 41. 沈师, 陈明学, 高爽, 等. 3D打印制备聚己内酯/Ⅰ型胶原组织工程半月板支架及其理化特性的研究. 中国修复重建外科杂志, 2018, 32(9): 1205-1210.
- 42. Gopinathan J, Pillai MM, Sahanand KS, et al. Synergistic effect of electrical conductivity and biomolecules on human meniscal cell attachment, growth, and proliferation in poly-ε-caprolactone nanocomposite scaffolds. Biomed Mater, 2017, 12(6): 065001.
- 43. Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res, 2017, 5: 17014.
- 44. Heiligenstein S, Cucchiarini M, Laschke MW, et al. Evaluation of nonbiomedical and biomedical grade alginates for the transplantation of genetically modified articular chondrocytes to cartilage defects in a large animal model in vivo. J Gene Med, 2011, 13(4): 230-242.
- 45. Rey-Rico A, Klich A, Cucchiarini M, et al. Biomedical-grade, high mannuronic acid content (BioMVM) alginate enhances the proteoglycan production of primary human meniscal fibrochondrocytes in a 3-D microenvironment. Sci Rep, 2016, 6: 28170.
- 46. Sun JY, Zhao X, Illeperuma WR, et al. Highly stretchable and tough hydrogels. Nature, 2012, 489(7414): 133-136.
- 47. Bakarich SE, Gorkin R 3rd, in het Panhuis M, et al. Three-dimensional printing fiber reinforced hydrogel composites. ACS Appl Mater Interfaces, 2014, 6(18): 15998-16006.
- 48. Almeida HV, Sathy BN, Dudurych I, et al. Anisotropic shape-memory alginate scaffolds functionalized with either type Ⅰor type Ⅱ collagen for cartilage tissue engineering. Tissue Eng Part A, 2017, 23(1-2): 55-68.
- 49. Deprés-Tremblay G, Chevrier A, Tran-Khanh N, et al. Chitosan inhibits platelet-mediated clot retraction, increases platelet-derived growth factor release, and increases residence time and bioactivity of platelet-rich plasma in vivo. Biomed Mater, 2017, 13(1): 015005.
- 50. Shive MS, Stanish WD, McCormack R, et al. BST-CarGel® Treatment Maintains Cartilage Repair Superiority over Microfracture at 5 Years in a Multicenter Randomized Controlled Trial. Cartilage, 2015, 6(2): 62-72.
- 51. Sarem M, Moztarzadeh F, Mozafari M, et al. Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human meniscus tissue. Mater Sci Eng C Mater Biol Appl, 2013, 33(8): 4777-4785.
- 52. Moradi L, Vasei M, Dehghan MM, et al. Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: in vivo study. Biomaterials, 2017, 126: 18-30.
- 53. Narita A, Takahara M, Sato D, et al. Biodegradable gelatin hydrogels incorporating fibroblast growth factor 2 promote healing of horizontal tears in rabbit meniscus. Arthroscopy, 2012, 28(2): 255-263.
- 54. Sasaki H, Rothrauff BB, Alexander PG, et al. In vitro repair of meniscal radial tear with hydrogels seeded with adipose stem cells and TGF-β3. Am J Sports Med, 2018, 46(10): 2402-2413.
- 55. Rothrauff BB, Shimomura K, Gottardi R, et al. Anatomical region-dependent enhancement of 3-dimensional chondrogenic differentiation of human mesenchymal stem cells by soluble meniscus extracellular matrix. Acta Biomater, 2017, 49: 140-151.
- 56. Grogan SP, Chung PH, Soman P, et al. Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomater, 2013, 9(7): 7218-7226.
- 57. Silva MA, Leite YKC, de Carvalho CES, et al. Behavior and biocompatibility of rabbit bone marrow mesenchymal stem cells with bacterial cellulose membrane. PeerJ, 2018, 6: e4656.
- 58. Shao W, Wu J, Liu H, et al. Novel bioactive surface functionalization of bacterial cellulose membrane. Carbohydr Polym, 2017, 178: 270-276.
- 59. Palaninathan V, Raveendran S, Rochani AK, et al. Bioactive bacterial cellulose sulfate electrospun nanofibers for tissue engineering applications. J Tissue Eng Regen Med, 2018, 12(7): 1634-1645.
- 60. Cook JL, Tomlinson JL, Kreeger JM, et al. Induction of meniscal regeneration in dogs using a novel biomaterial. Am J Sports Med, 1999, 27(5): 658-665.
- 61. Cook JL, Fox DB, Malaviya P, et al. Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med, 2006, 34(1): 32-42.
- 62. Gastel JA, Muirhead WR, Lifrak JT, et al. Meniscal tissue regeneration using a collagenous biomaterial derived from porcine small intestine submucosa. Arthroscopy, 2001, 17(2): 151-159.
- 63. Tan Y, Zhang Y, Pei M. Meniscus reconstruction through coculturing meniscus cells with synovium-derived stem cells on small intestine submucosa—a pilot study to engineer meniscus tissue constructs. Tissue Eng Part A, 2010, 16(1): 67-79.
- 64. Warnock JJ, Spina J, Bobe G, et al. Culture of canine synoviocytes on porcine intestinal submucosa scaffolds as a strategy for meniscal tissue engineering for treatment of meniscal injury in dogs. Vet J, 2014, 199(1): 49-56.
- 65. Abdelgaied A, Stanley M, Galfe M, et al. Comparison of the biomechanical tensile and compressive properties of decellularised and natural porcine meniscus. J Biomech, 2015, 48(8): 1389-1396.
- 66. Yamasaki T, Deie M, Shinomiya R, et al. Meniscal regeneration using tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow. J Biomed Mater Res A, 2005, 75(1): 23-30.
- 67. Yamasaki T, Deie M, Shinomiya R, et al. Transplantation of meniscus regenerated by tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow. Artif Organs, 2008, 32(7): 519-524.
- 68. Yuan Z, Liu S, Hao C, et al. AMECM/DCB scaffold prompts successful total meniscus reconstruction in a rabbit total meniscectomy model. Biomaterials, 2016, 111: 13-26.
- 69. Gao S, Guo W, Chen M, et al. Fabrication and characterization of electrospun nanofibers composed of decellularized meniscus extracellular matrix and polycaprolactone for meniscus tissue engineering. Journal of Materials Chemistry B, 2017, 5: 2273-2285.
- 70. Gao S, Chen M, Wang P, et al. An electrospun fiber reinforced scaffold promotes total meniscus regeneration in rabbit meniscectomy model. Acta Biomater, 2018, 73: 127-140.
- 71. 贺唯, 樊瑜波, 李晓明. 骨修复材料活性机制和应用的最新研究进展. 中国修复重建外科杂志, 2018, 32(9): 1107-1115.
- 72. Kremer A, Ribitsch I, Reboredo J, et al. Three-dimensional coculture of meniscal cells and mesenchymal stem cells in collagen type Ⅰ hydrogel on a small intestinal matrix-a pilot study toward equine meniscus tissue engineering. Tissue Eng Part A, 2017, 23(9-10): 390-402.
- 73. Wang Y, Yuan X, Yu K, et al. Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration. Biomaterials, 2018, 171: 118-132.
- 74. Sittinger M, Bujia J, Minuth WW, et al. Engineering of cartilage tissue using bioresorbable polymer carriers in perfusion culture. Biomaterials, 1994, 15(6): 451-456.
- 75. Patel JM, Ghodbane SA, Brzezinski A, et al. Tissue-engineered total meniscus replacement with a fiber-reinforced scaffold in a 2-year ovine model. Am J Sports Med, 2018, 46(8): 1844-1856.
- 76. Halili AN, Hasirci N, Hasirci V. A multilayer tissue engineered meniscus substitute. J Mater Sci Mater Med, 2014, 25(4): 1195-1209.
- 77. Johnson T, Bahrampourian R, Patel A, et al. Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens. Biomed Mater Eng, 2010, 20(2): 107-118.
- 78. Liao CJ, Chen CF, Chen JH, et al. Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J Biomed Mater Res, 2002, 59(4): 676-681.
- 79. Mooney DJ, Baldwin DF, Suh NP, et al. Novel approach to fabricate porous sponges of poly (D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials, 1996, 17(14): 1417-1422.
- 80. Dehghani F, Annabi N. Engineering porous scaffolds using gas-based techniques. Curr Opin Biotechnol, 2011, 22(5): 661-666.
- 81. Nam YS, Yoon JJ, Park TG. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res, 2015, 53(1): 1-7.
- 82. Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng, 2001, 7(1): 23-33.
- 83. Whang K, Thomas CH, Healy KE, et al. A novel method to fabricate bioabsorbable scaffolds. Polymer, 2015, 36(4): 837-842.
- 84. Shih YR, Chen CN, Tsai SW, et al. Growth of mesenchymal stem cells on electrospun type Ⅰ collagen nanofibers. Stem Cells, 2006, 24(11): 2391-2397.
- 85. Li WJ, Laurencin CT, Caterson EJ, et al. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J Biomed Mater Res, 2002, 60(4): 613-621.
- 86. Ligon SC, Liska R, Stampfl J, et al. Polymers for 3D printing and customized additive manufacturing. Chem Rev, 2017, 117(15): 10212-10290.
- 87. Ferris CJ, Gilmore KG, Wallace GG, et al. Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol, 2013, 97(10): 4243-4258.
- 88. Ballyns JJ, Cohen DL, Malone E, et al. An optical method for evaluation of geometric fidelity for anatomically shaped tissue-engineered constructs. Tissue Eng Part C Methods, 2010, 16(4): 693-703.
- 89. Rankin M, Noyes FR, Barber-Westin SD, et al. Human meniscus allografts’ in vivo size and motion characteristics: magnetic resonance imaging assessment under weightbearing conditions. Am J Sports Med, 2006, 34(1): 98-107.
- 90. 赵星, 余黎, 陶圣祥, 等. 3D打印技术在严重肱骨远端骨缺损治疗中的应用观察. 中国修复重建外科杂志, 2018, 32(12): 1534-1539.
- 91. Proctor CS, Schmidt MB, Whipple RR, et al. Material properties of the normal medial bovine meniscus. J Orthop Res, 1989, 7(6): 771-782.
- 92. Cameron HU, Macnab I. The structure of the meniscus of the human knee joint. Clin Orthop Relat Res, 1972, 89: 215-219.
- 93. Newman AP, Anderson DR, Daniels AU, et al. Mechanics of the healed meniscus in a canine model. Am J Sports Med, 1989, 17(2): 164-175.
- 94. Zhu W, Chern KY, Mow VC. Anisotropic viscoelastic shear properties of bovine meniscus. Clin Orthop Relat Res, 1994, (306): 34-45.