1. |
Li X, Ding J, Wang J, et al. Biomimetic biphasic scaffolds for osteochondral defect repair. Regen Biomater, 2015, 2(3): 221-228.
|
2. |
Correa D, Lietman SA. Articular cartilage repair: Current needs, methods and research directions. Semin Cell Dev Biol, 2017, 62: 67-77.
|
3. |
DiBartola AC, Wright BM, Magnussen RA, et al. Clinical outcomes after autologous chondrocyte implantation in adolescents’ knees: a systematic review. Arthroscopy, 2016, 32(9): 1905-1916.
|
4. |
Boushell MK, Hung CT, Hunziker EB, et al. Current strategies for integrative cartilage repair. Connect Tissue Res, 2017, 58(5): 393-406.
|
5. |
Mithoefer K, McAdams T, Williams RJ, et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med, 2009, 37(10): 2053-2063.
|
6. |
Hangody L, Vásárhelyi G, Hangody LR, et al. Autologous osteochondral grafting—technique and long-term results. Injury, 2008, 39(Suppl 1): S32-S39.
|
7. |
Johnstone B, Alini M, Cucchiarini M, et al. Tissue engineering for articular cartilage repair—the state of the art. Eur Cell Mater, 2013, 25: 248-267.
|
8. |
Pereira H, Frias AM, Oliveira JM, et al. Tissue engineering and regenerative medicine strategies in meniscus lesions. Arthroscopy, 2011, 27(12): 1706-1719.
|
9. |
Oh HJ, Kim SH, Cho JH, et al. Mechanically reinforced extracellular matrix scaffold for application of cartilage tissue engineering. Tissue Eng Regen Med, 2018, 15(3): 287-299.
|
10. |
Kang H, Peng J, Lu S, et al. In vivo cartilage repair using adipose-derived stem cell-loaded decellularized cartilage ECM scaffolds. J Tissue Eng Regen Med, 2014, 8(6): 442-453.
|
11. |
Benders KE, van Weeren PR, Badylak SF, et al. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol, 2013, 31(3): 169-176.
|
12. |
Yan B, Zhang Z, Wang X, et al. PLGA-PTMC-cultured bone mesenchymal stem cell scaffold enhances cartilage regeneration in tissue-engineered tracheal transplantation. Artif Organs, 2017, 41(5): 461-469.
|
13. |
Ngiam M, Liao S, Patil AJ, et al. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone, 2009, 45(1): 4-16.
|
14. |
Gauvin R, Chen YC, Lee JW, et al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 2012, 33(15): 3824-3834.
|
15. |
信更新, 刘毅. 组织工程多孔支架的构建方法. 中国美容整形外科杂志, 2018, 29(8): 500-503.
|
16. |
Dutta RC, Dey M, Dutta AK, et al. Competent processing techniques for scaffolds in tissue engineering. Biotechnol Adv, 2017, 35(2): 240-250.
|
17. |
Yen HJ, Hsu SH, Tseng CS, et al. Fabrication of precision scaffolds using liquid-frozen deposition manufacturing for cartilage tissue engineering. Tissue Eng Part A, 2009, 15(5): 965-975.
|
18. |
Hung KC, Tseng CS, Dai LG, et al. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials, 2016, 83: 156-168.
|
19. |
Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials, 2006, 27(19): 3675-3683.
|
20. |
郭维民, 刘舒云, 高钺, 等. 新型脱细胞半月板细胞外基质的制备及其生物相容性的研究. 中国医药生物技术, 2015, 10(1): 5-10.
|
21. |
鹿亮, 刘彬, 尚希福, 等. 脱细胞软骨细胞外基质取向支架复合软骨细胞构建组织工程软骨的实验研究. 中国修复重建外科杂志, 2018, 32(3): 291-297.
|
22. |
Sun F, Zhou H, Lee J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater, 2011, 7(11): 3813-3828.
|
23. |
Zhao C, Tan A, Pastorin G, et al. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnol Adv, 2013, 31(5): 654-668.
|
24. |
Ingber DE. The mechanochemical basis of cell and tissue regulation. Mech Chem Biosyst, 2004, 1(1): 53-68.
|
25. |
Wang JH, Thampatty BP. Mechanobiology of adult and stem cells. Int Rev Cell Mol Biol, 2008, 271: 301-346.
|
26. |
Waldman SD, Spiteri CG, Grynpas MD, et al. Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro. J Orthop Res, 2003, 21(4): 590-596.
|
27. |
Nugent GE, Aneloski NM, Schmidt TA, et al. Dynamic shear stimulation of bovine cartilage biosynthesis of proteoglycan 4. Arthritis Rheum, 2006, 54(6): 1888-1896.
|
28. |
Zhang Y, Chen S, Pei M. Biomechanical signals guiding stem cell cartilage engineering: from molecular adaption to tissue functionality. Eur Cell Mater, 2016, 31: 59-78.
|
29. |
Yang Q, Peng J, Guo Q, et al. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials, 2008, 29(15): 2378-2387.
|
30. |
Yin H, Wang Y, Sun Z, et al. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Biomater, 2016, 33: 96-109.
|
31. |
Guo W, Zheng X, Zhang W, et al. Mesenchymal stem cells in oriented PLGA/ACECM composite scaffolds enhance structure-specific regeneration of hyaline cartilage in a rabbit Model. Stem Cells Int, 2018, 2018: 6542198.
|
32. |
Zheng X, Yang F, Wang S, et al. Fabrication and cell affinity of biomimetic structured PLGA/articular cartilage ECM composite scaffold. J Mater Sci Mater Med, 2011, 22(3): 693-704.
|
33. |
付晶, 张伟, 张爱武, 等. 鹿茸软骨组织脱细胞基质材料的制备及生物相容性研究. 中国修复重建外科杂志, 2017, 31(6): 723-729.
|