1. |
Prado MP, Kennedy JG, Raduan F, et al. Diagnosis and treatment of osteochondral lesions of the ankle: current concepts. Rev Bras Ortop, 2016, 51(5): 489-500.
|
2. |
Berndt AL, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg (Am), 1959, 41-A: 988-1020.
|
3. |
Verhagen RA, Maas M, Dijkgraaf MG, et al. Prospective study on diagnostic strategies in osteochondral lesions of the talus. Is MRI superior to helical CT? J Bone Joint Surg (Br), 2005, 87(1): 41-46.
|
4. |
Zengerink M, Szerb I, Hangody L, et al. Current concepts: treatment of osteochondral ankle defects. Foot Ankle Clin, 2006, 11(2): 331-359.
|
5. |
Ng A, Bernhard A, Bernhard K. Advances in ankle cartilage repair. Clin Podiatr Med Surg, 2017, 34(4): 471-487.
|
6. |
Gianakos AL, Yasui Y, Hannon CP, et al. Current management of talar osteochondral lesions. World J Orthop, 2017, 8(1): 12-20.
|
7. |
Shimozono Y, Hurley ET, Yasui Y, et al. The Presence and degree of bone marrow edema influence midterm clinical outcomes after microfracture for osteochondral lesions of the talus. Am J Sports Med, 2018, 46(10): 2503-2508.
|
8. |
Dahmen J, Lambers KTA, Reilingh ML, et al. No superior treatment for primary osteochondral defects of the talus. Knee Surg Sports Traumatol Arthrosc, 2018, 26(7): 2142-2157.
|
9. |
Choi JI, Lee KB. Comparison of clinical outcomes between arthroscopic subchondral drilling and microfracture for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc, 2016, 24(7): 2140-2147.
|
10. |
Duramaz A, Baca E. Microfracture provides better clinical results than debridement in the treatment of acute talar osteochondral lesions using arthroscopic assisted fixation of acute ankle fractures. Knee Surg Sports Traumatol Arthrosc, 2018, 26(10): 3089-3095.
|
11. |
魏民, 刘洋. 关节镜下微骨折治疗距骨骨软骨损伤的临床观察. 中国骨伤, 2017, 30(8): 751-754.
|
12. |
Guney A, Yurdakul E, Karaman I, et al. Medium-term outcomes of mosaicplasty versus arthroscopic microfracture with or without platelet-rich plasma in the treatment of osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc, 2016, 24(4): 1293-1298.
|
13. |
Polat G, Erşen A, Erdil ME, et al. Long-term results of microfracture in the treatment of talus osteochondral lesions. Knee Surg Sports Traumatol Arthrosc, 2016, 24(4): 1299-1303.
|
14. |
Choi WJ, Park KK, Kim BS, et al. Osteochondral lesion of the talus: is there a critical defect size for poor outcome? Am J Sports Med, 2009, 37(10): 1974-1980.
|
15. |
Chuckpaiwong B, Berkson EM, Theodore GH. Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy, 2008, 24(1): 106-112.
|
16. |
Ramponi L, Yasui Y, Murawski CD, et al. Lesion size is a predictor of clinical outcomes after bone marrow stimulation for osteochondral lesions of the talus: a systematic review. Am J Sports Med, 2017, 45(7): 1698-1705.
|
17. |
Seow D, Yasui Y, Hutchinson ID, et al. The subchondral bone is affected by bone marrow stimulation: a systematic review of preclinical animal studies. Cartilage, 2019, 10(1): 70-81.
|
18. |
Flynn S, Ross KA, Hannon CP, et al. Autologous osteochondral transplantation for osteochondral lesions of the talus. Foot Ankle Int, 2016, 37(4): 363-372.
|
19. |
Shimozono Y, Hurley ET, Myerson CL, et al. Good clinical and functional outcomes at mid-term following autologous osteochondral transplantation for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc, 2018, 26(10): 3055-3062.
|
20. |
Fraser EJ, Harris MC, Prado MP, et al. Autologous osteochondral transplantation for osteochondral lesions of the talus in an athletic population. Knee Surg Sports Traumatol Arthrosc, 2016, 24(4): 1272-1279.
|
21. |
Henkelmann R, Schmal H, Pilz IH, et al. Prospective clinical trial of patients who underwent ankle arthroscopy with articular diseases to match clinical and radiological scores with intra-articular cytokines. Int Orthop, 2015, 39(8): 1631-1637.
|
22. |
Fansa AM, Murawski CD, Imhauser CW, et al. Autologous osteochondral transplantation of the talus partially restores contact mechanics of the ankle joint. Am J Sports Med, 2011, 39(11): 2457-2465.
|
23. |
Yoon HS, Park YJ, Lee M, et al. Osteochondral autologous transplantation is superior to repeat arthroscopy for the treatment of osteochondral lesions of the talus after failed primary arthroscopic treatment. Am J Sports Med, 2014, 42(8): 1896-1903.
|
24. |
Fraser EJ, Savage-Elliott I, Yasui Y, et al. Clinical and MRI donor site outcomes following autologous osteochondral transplantation for talar osteochondral lesions. Foot Ankle Int, 2016, 37(9): 968-976.
|
25. |
Gross CE, Adams SB, Easley ME, et al. Role of fresh osteochondral allografts for large talar osteochondral lesions. J Am Acad Orthop Surg, 2016, 24(1): e9-e17.
|
26. |
Okeagu CN, Baker EA, Barreras NA, et al. Review of mechanical, processing, and immunologic factors associated with outcomes of fresh osteochondral allograft transplantation of the talus. Foot Ankle Int, 2017, 38(7): 808-819.
|
27. |
El-Rashidy H, Villacis D, Omar I, et al. Fresh osteochondral allograft for the treatment of cartilage defects of the talus: a retrospective review. J Bone Joint Surg (Am), 2011, 93(17): 1634-1640.
|
28. |
Yañez Arauz JM, Del Vecchio JJ, Bilbao F, et al. Osteochondral lesions of the talus treatment with fresh frozen allograft. Foot Ankle Surg, 2017, 23(4): 296-301.
|
29. |
Ng A, Bernhard K. The use of particulated juvenile allograft cartilage in foot and ankle surgery. Clin Podiatr Med Surg, 2018, 35(1): 11-18.
|
30. |
Dekker TJ, Steele JR, Federer AE, et al. Efficacy of particulated juvenile cartilage allograft transplantation for osteochondral lesions of the talus. Foot Ankle Int, 2018, 39(3): 278-283.
|
31. |
Adkisson HD, Milliman C, Zhang X, et al. Immune evasion by neocartilage-derived chondrocytes: Implications for biologic repair of joint articular cartilage. Stem Cell Res, 2010, 4(1): 57-68.
|
32. |
Adkisson HD 4th, Martin JA, Amendola RL, et al. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am J Sports Med, 2010, 38(7): 1324-1333.
|
33. |
Coetzee JC, Giza E, Schon LC, et al. Treatment of osteochondral lesions of the talus with particulated juvenile cartilage. Foot Ankle Int, 2013, 34(9): 1205-1211.
|
34. |
Lanham NS, Carroll JJ, Cooper MT, et al. A comparison of outcomes of particulated juvenile articular cartilage and bone marrow aspirate concentrate for articular cartilage lesions of the talus. Foot Ankle Spec, 2017, 10(4): 315-321.
|
35. |
Saltzman BM, Lin J, Lee S. Particulated juvenile articular cartilage allograft transplantation for osteochondral talar lesions. Cartilage, 2017, 8(1): 61-72.
|
36. |
Dekker TJ, Erickson B, Adams SB, et al. Topical review: MACI as an emerging technology for the treatment of talar osteochondral lesions. Foot Ankle Int, 2017, 38(9): 1045-1048.
|
37. |
Baums MH, Schultz W, Kostuj T, et al. Cartilage repair techniques of the talus: An update. World J Orthop, 2014, 5(3): 171-179.
|
38. |
Erickson B, Fillingham Y, Hellman M, et al. Surgical management of large talar osteochondral defects using autologous chondrocyte implantation. Foot Ankle Surg, 2018, 24(2): 131-136.
|
39. |
Usuelli FG, D’Ambrosi R, Maccario C, et al. All-arthroscopic AMIC® (AT-AMIC®) technique with autologous bone graft for talar osteochondral defects: clinical and radiological results. Knee Surg Sports Traumatol Arthrosc, 2018, 26(3): 875-881.
|
40. |
Gottschalk O, Altenberger S, Baumbach S, et al. Functional medium-term results after autologous matrix-induced chondrogenesis for osteochondral lesions of the talus: a 5-year prospective cohort study. J Foot Ankle Surg, 2017, 56(5): 930-936.
|
41. |
Kreulen C, Giza E, Walton J, et al. Seven-year follow-up of matrix-induced autologous implantation in talus articular defects. Foot Ankle Spec, 2018, 11(2): 133-137.
|
42. |
Fortier LA, Barker JU, Strauss EJ, et al. The role of growth factors in cartilage repair. Clin Orthop Relat Res, 2011, 469(10): 2706-2715.
|
43. |
Smyth NA, Murawski CD, Fortier LA, et al. Platelet-rich plasma in the pathologic processes of cartilage: review of basic science evidence. Arthroscopy, 2013, 29(8): 1399-1409.
|
44. |
Görmeli G, Karakaplan M, Görmeli CA, et al. Clinical effects of platelet-rich plasma and hyaluronic acid as an additional therapy for talar osteochondral lesions treated with microfracture surgery: a prospective randomized clinical trial. Foot Ankle Int, 2015, 36(8): 891-900.
|
45. |
Guney A, Akar M, Karaman I, et al. Clinical outcomes of platelet rich plasma (PRP) as an adjunct to microfracture surgery in osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc, 2015, 23(8): 2384-2389.
|
46. |
Desando G, Bartolotti I, Vannini F, et al. Repair potential of matrix-induced bone marrow aspirate concentrate and matrix-induced autologous chondrocyte implantation for talar osteochondral repair: patterns of some catabolic, inflammatory, and pain mediators. Cartilage, 2017, 8(1): 50-60.
|
47. |
Karnovsky SC, DeSandis B, Haleem AM, et al. Comparison of juvenile allogenous articular cartilage and bone marrow aspirate concentrate versus microfracture with and without bone marrow aspirate concentrate in arthroscopic treatment of talar osteochondral lesions. Foot Ankle Int, 2018, 39(4): 393-405.
|
48. |
Cassano JM, Kennedy JG, Ross KA, et al. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc, 2018, 26(1): 333-342.
|
49. |
Hannon CP, Ross KA, Murawski CD, et al. Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes. Arthroscopy, 2016, 32(2): 339-347.
|
50. |
DeSandis BA, Haleem AM, Sofka CM, et al. Arthroscopic treatment of osteochondral lesions of the talus using juvenile articular cartilage allograft and autologous bone marrow aspirate concentration. J Foot Ankle Surg, 2018, 57(2): 273-280.
|