1. |
戴志刚, 钟伟, 冯磊, 等. 复合腱-骨固定的生物力学及形态学研究. 中国矫形外科杂志, 2017, 25(10): 917-921.
|
2. |
Smith L, Xia Y, Galatz LM, et al. Tissue-engineering strategies for the tendon/ligament-to-bone insertion. Connect Tissue Res, 2012, 53(2): 95-105.
|
3. |
Yan Z, Yin H, Nerlich M, et al. Boosting tendon repair: interplay of cells, growth factors and scaffold-free and gel-based carriers. J Exp Orthop, 2018, 5(1): 1.
|
4. |
Zhang C, Zhang E, Yang L, et al. Histone deacetylase inhibitor treated cell sheet from mouse tendon stem/progenitor cells promotes tendon repair. Biomaterials, 2018, 172: 66-82.
|
5. |
Stergiopoulos A, Politis PK. The role of nuclear receptors in controlling the fine balance between proliferation and differentiation of neural stem cells. Arch Biochem Biophys, 2013, 534(1-2): 27-37.
|
6. |
Nourissat G, Diop A, Maurel N, et al. Mesenchymal stem cell therapy regenerates the native bone-tendon junction after surgical repair in a degenerative rat model. PLoS One, 2010, 5(8): e12248.
|
7. |
Hernigou P, Flouzat Lachaniette CH, Delambre J, et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop, 2014, 38(9): 1811-1818.
|
8. |
Ko E, Alberti K, Lee JS, et al. Nanostructured tendon-derived scaffolds for enhanced bone regeneration by human adipose-derived stem cells. ACS Appl Mater Interfaces, 2016, 8(35): 22819-22829.
|
9. |
金玲, 陈剑, 吴静, 等. 人羊膜上皮细胞的干细胞特性. 中国组织工程研究与临床康复, 2011, 15(19): 3555-3558.
|
10. |
Breidenbach AP, Gilday SD, Lalley AL, et al. Functional tissue engineering of tendon: Establishing biological success criteria for improving tendon repair. J Biomech, 2014, 47(9): 1941-1948.
|
11. |
Kiliçoğlu Öİ, Dikmen G, Koyuncu Ö, et al. Effects of demineralized bone matrix on tendon-bone healing: an in vivo, experimental study on rabbits. Acta Orthop Traumatol Turc, 2012, 46(6): 443-448.
|
12. |
Chen JL, Yin Z, Shen WL, et al. Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles. Biomaterials, 2010, 31(36): 9438-9451.
|
13. |
Wang S, Wang Y, Song L, et al. Decellularized tendon as a prospective scaffold for tendon repair. Mater Sci Eng C Mater Biol Appl, 2017, 77: 1290-1301.
|
14. |
Lu J, Yu H, Chen CZ. Biological properties of calcium phosphate biomaterials for bone repair: a review. Royal Society of Chemistry, 2018, 8(4): 2015-2033.
|
15. |
Weimin P, Dan L, Yiyong W, et al. Tendon-to-bone healing using an injectable calcium phosphate cement combined with bone xenograft/BMP composite. Biomaterials, 2013, 34(38): 9926-9936.
|
16. |
Zhao S, Peng L, Xie G, et al. Effect of the interposition of calcium phosphate materials on tendon-bone healing during repair of chronic rotator cuff tear. Am J Sports Med, 2014, 42(8): 1920-1929.
|
17. |
Zhu C, Pongkitwitoon S, Qiu J, et al. Design and fabrication of a hierarchically structured scaffold for tendon-to-bone repair. Adv Mater, 2018, 30(16): e1707306.
|
18. |
Guo J, Ning C, Liu X. Bioactive calcium phosphate silicate ceramic surface-modified PLGA for tendon-to-bone healing. Colloids Surf B Biointerfaces, 2018, 164: 388-395.
|
19. |
Parry JA, Wagner ER, Kok PL, et al. A combination of a polycaprolactone fumarate scaffold with polyethylene terephthalate sutures for intra-articular ligament regeneration. Tissue Eng Part A, 2018, 24(3-4): 245-253.
|
20. |
Liu W, Lipner J, Xie J, et al. Nanofiber scaffolds with gradients in mineral content for spatial control of osteogenesis. ACS Appl Mater Interfaces, 2014, 6(4): 2842-2849.
|
21. |
Naghashzargar E, Farè S, Catto V, et al. Nano/micro hybrid scaffold of PCL or P3HB nanofibers combined with silk fibroin for tendon and ligament tissue engineering. J Appl Biomater Funct Mater, 2015, 13(2): e156-e168.
|
22. |
Yokoya S, Mochizuki Y, Nagata Y, et al. Tendon-bone insertion repair and regeneration using polyglycolic acid sheet in the rabbit rotator cuff injury model. Am J Sports Med, 2008, 36(7): 1298-1309.
|
23. |
Patel S, Caldwell JM, Doty SB, et al. Integrating soft and hard tissues via interface tissue engineering. J Orthop Res, 2018, 36(4): 1069-1077.
|
24. |
蔡江瑜, 蒋佳, 莫秀梅, 等. 丝素蛋白/聚乳酸-聚己内酯纳米纤维支架对兔腱-骨愈合影响的实验研究. 中国修复重建外科杂志, 2017, 31(8): 957-962.
|
25. |
Zelzer E, Blitz E, Killian ML, et al. Tendon-to-bone attachment: from development to maturity. Birth Defects Res C Embryo Today, 2014, 102(1): 101-112.
|
26. |
Cooper JO, Bumgardner JD, Cole JA, et al. Co-cultured tissue-specific scaffolds for tendon/bone interface engineering. J Tissue Eng, 2014, 5: 2041731414542294.
|
27. |
Lomas AJ, Ryan CN, Sorushanova A, et al. The past, present and future in scaffold-based tendon treatments. Adv Drug Deliv Rev, 2015, 84: 257-277.
|
28. |
Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol, 2014, 32(8): 760-772.
|
29. |
Miura T, Yokokawa R. Tissue culture on a chip: Developmental biology applications of self-organized capillary networks in microfluidic devices. Dev Growth Differ, 2016, 58(6): 505-515.
|
30. |
Park SH, Choi YJ, Moon SW, et al. Three-dimensional bio-printed scaffold sleeves with mesenchymal stem cells for enhancement of tendon-to-bone healing in anterior cruciate ligament reconstruction using soft-tissue tendon graft. Arthroscopy, 2018, 34(1): 166-179.
|
31. |
Park H, Lim DJ, Sung M, et al. Microengineered platforms for co-cultured mesenchymal stem cells towards vascularized bone tissue engineering. Tissue Eng Regen Med, 2016, 13(5): 465-474.
|
32. |
Ren Q, Cai M, Zhang K, et al. Effects of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) release from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on bone. Braz J Med Biol Res, 2017, 51(2): e6520.
|
33. |
Kabuto Y, Morihara T, Sukenari T, et al. Stimulation of rotator cuff repair by sustained release of bone morphogenetic protein-7 using a gelatin hydrogel sheet. Tissue Eng Part A, 2015, 21(13-14): 2025-2033.
|
34. |
Wang Y, Tang Z, Xue R, et al. TGF-β1 promoted MMP-2 mediated wound healing of anterior cruciate ligament fibroblasts through NF-κB. Connect Tissue Res, 2011, 52(3): 218-225.
|
35. |
Jiang K, Wang Z, Du Q, et al. A new TGF-β3 controlled-released chitosan scaffold for tissue engineering synovial sheath. J Biomed Mater Res A, 2014, 102(3): 801-807.
|
36. |
Sakiyama-Elbert SE, Das R, Gelberman RH, et al. Controlled-release kinetics and biologic activity of platelet-derived growth factor-BB for use in flexor tendon repair. J Hand Surg (Am), 2008, 33(9): 1548-1557.
|
37. |
Jo CH, Kim JE, Yoon KS, et al. Platelet-rich plasma stimulates cell proliferation and enhances matrix gene expression and synthesis in tenocytes from human rotator cuff tendons with degenerative tears. Am J Sports Med, 2012, 40(5): 1035-1045.
|
38. |
Wang X, Wenk E, Zhang X, et al. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release, 2009, 134(2): 81-90.
|
39. |
车伟. BMP-2 和 VEGF165 共表达基因修饰的 BMSCs 对腱骨界面愈合的研究. 合肥: 安徽医科大学, 2017.
|
40. |
杜庆钧, 苏培强, 何家强, 等. BFGF、PDGF对兔膝前交叉韧带重建术后早期腱骨愈合影响的实验研究. 重庆医学, 2015, 44(6): 746-748.
|
41. |
Muller B, Bowman KF Jr, Bedi A. ACL graft healing and biologics. Clin Sports Med, 2013, 32(1): 93-109.
|
42. |
Ning LJ, Zhang Y, Chen XH, et al. Preparation and characterization of decellularized tendon slices for tendon tissue engineering. J Biomed Mater Res A, 2012, 100(6): 1448-1456.
|
43. |
Li H, Jiang J, Wu Y, et al. Potential mechanisms of a periosteum patch as an effective and favourable approach to enhance tendon-bone healing in the human body. Int Orthop, 2012, 36(3): 665-669.
|
44. |
McCarrel T, Fortier L. Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. J Orthop Res, 2010, 27(8): 1033-1042.
|
45. |
Engebretsen L, Steffen K, Alsousou J, et al. IOC consensus paper on the use of platelet-rich plasma in sports medicine. Br J Sports Med, 2010, 44(15): 1072-1081.
|
46. |
马震胜, 张磊, 鄂钢, 等. 自体肌腱加富血小板血浆重建比格犬前交叉韧带的实验研究. 实用骨科杂志, 2016, 22(5): 420-424.
|
47. |
Malavolta EA, Gracitelli ME, Ferreira Neto AA, et al. Platelet-rich plasma in rotator cuff repair: a prospective randomized study. Am J Sports Med, 2014, 42(10): 2446-2454.
|
48. |
喻鑫罡, 张先龙, 曾炳芳, 等. 低频微动后转化生长因子 β1 与胰岛素样生长因子Ⅰ在新骨组织中的表达研究. 中国修复重建外科杂志, 2006, 20(7): 685-689.
|
49. |
Walsh WR, Stephens P, Vizesi F, et al. Effects of low-intensity pulsed ultrasound on tendon-bone healing in an intra-articular sheep knee model. Arthroscopy, 2007, 23(2): 197-204.
|
50. |
Wang L, Qin L, Lu HB, et al. Extracorporeal shock wave therapy in treatment of delayed bone-tendon healing. Am J Sports Med, 2008, 36(2): 340-347.
|
51. |
Cao D, Liu W, Wei X, et al. In vitro tendon engineering with avian tenocytes and polyglycolic acids: a preliminary report. Tissue Eng, 2006, 12(5): 1369-1377.
|
52. |
王蕾, 罗涛, 邓廉夫. 应力刺激在肩袖损伤修复中作用机制的实验研究. 中华创伤骨科杂志, 2009, 11(2): 152-156.
|
53. |
Thomopoulos S, Williams GR, Soslowsky LJ. Tendon to bone healing: differences in biomechanical, structural, and compositional properties due to a range of activity levels. J Biomech Eng, 2003, 125(1): 106-113.
|
54. |
Maeda E, Shelton JC, Bader DL, et al. Differential regulation of gene expression in isolated tendon fascicles exposed to cyclic tensile strain in vitro. J Appl Physiol (1985), 2009, 106(2): 506-512.
|
55. |
Skutek M, van Griensven M, Zeichen J, et al. Cyclic mechanical stretching modulates secretion pattern of growth factors in human tendon fibroblasts. Eur J Appl Physiol, 2001, 86(1): 48-52.
|
56. |
Blitz E, Sharir A, Akiyama H, et al. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development, 2013, 140(13): 2680-2690.
|
57. |
李跑, 高尚, 周梅, 等. 不同机械牵伸条件对大鼠肌腱干细胞分化的影响. 中国修复重建外科杂志, 2017, 31(4): 481-488.
|
58. |
Loozen LD, Vandersteen A, Kragten AH, et al. Bone formation by heterodimers through non-viral gene delivery of BMP-2/6 and BMP-2/7. Eur Cell Mater, 2018, 35: 195-208.
|
59. |
Qu J, Thoreson AR, Chen Q, et al. Tendon gradient mineralization for tendon to bone interface integration. J Orthop Res, 2013, 31(11): 1713-1719.
|
60. |
Leong NL, Arshi A, Kabir N, et al. In vitro and in vivo evaluation of heparin mediated growth factor release from tissue-engineered constructs for anterior cruciate ligament reconstruction. J Orthop Res, 2015, 33(2): 229-236.
|
61. |
Santo VE, Gomes ME, Mano JF, et al. Controlled release strategies for bone, cartilage, and osteochondral engineering—Part Ⅰ: recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng Part B Rev, 2013, 19(4): 308-326.
|
62. |
尹迪. 基于微流控芯片的细胞操控及分离方法研究. 上海: 东华大学, 2017.
|
63. |
Font Tellado S, Chiera S, Bonani W, et al. Heparin functionalization increases retention of TGF-β2 and GDF5 on biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Acta Biomater, 2018, 72: 150-166.
|