1. |
Quoc CH, Taupin T, Guérin N, et al. Volumetric evaluation of fat resorption after breast lipofilling. Ann Chir Plast Esthet, 2015, 60(6): 495-499.
|
2. |
Simorre M, Chaput B, Voglimacci SM, et al. Lipofilling in breast reconstruction: is there any population with higher risk of local recurrence? Literature systematic review Gynecol Obstet Fertil, 2015, 43(4): 309-318.
|
3. |
Ho Quoc C, Delay E. How to treat fat necrosis after lipofilling into the breast? Ann Chir Plast Esthet, 2015, 60(3): 179-183.
|
4. |
Geissler PJ, Davis K, Roostaeian J, et al. Improving fat transfer viability: the role of aging, body mass index, and harvest site. Plast Reconstr Surg, 2014, 134(2): 227-232.
|
5. |
Sharma G, Prossnitz ER. G-protein-coupled estrogen receptor (GPER) and sex-specific metabolic homeostasis. Adv Exp Med Biol, 2017, 1043: 427-453.
|
6. |
Gormsen LC, Høst C, Hjerrild BE, et al. Estradiol acutely inhibits whole body lipid oxidation and attenuates lipolysis in subcutaneous adipose tissue: a randomized, placebo-controlled study in postmenopausal women. Eur J Endocrinol, 2012, 167(4): 543-551.
|
7. |
Gavin KM, Cooper EE, Raymer DK, et al. Estradiol effects on subcutaneous adipose tissue lipolysis in premenopausal women are adipose tissue depot specific and treatment dependent. Am J Physiol Endocrinol Metab, 2013, 304(11): E1167-E1174.
|
8. |
Escobar-Morreale HF, Alvarez-Blasco F, Botella-Carretero JI, et al. The striking similarities in the metabolic associations of female androgen excess and male androgen deficiency. Hum Reprod, 2014, 29(10): 2083-2091.
|
9. |
Oruc M, Ozer K, Turan A. The role of estrogen in the modulation of autologous fat graft outcomes. Plast Reconstr Surg, 2015, 136(1): 112e.
|
10. |
Carobbio S, Guénantin AC, Samuelson I, et al. Brown and beige fat: From molecules to physiology and pathophysiology. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(1): 37-50.
|
11. |
Shao M, Wang QA, Song A, et al. Cellular origins of beige fat cells revisited. Diabetes, 2019, 68(10): 1874-1885.
|
12. |
Phillips KJ. Beige fat, adaptive thermogenesis, and its regulation by exercise and thyroid hormone. Biology, 2019, 8(3): 57.
|
13. |
Kim HJ, Choi EJ, Kim HS, et al. Germinated soy germ extract ameliorates obesity through beige fat activation. Food Funct, 2019, 10(2): 836-848.
|
14. |
Shapira SN, Seale P. Transcriptional control of brown and beige fat development and function. Obesity (Silver Spring), 2019, 27(1): 13-21.
|
15. |
Chen Y, Ikeda K, Yoneshiro T, et al. Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature, 2019, 565(7738): 180-185.
|
16. |
Yang W, Seale P. Stepping up human beige fat cell production. Cell Rep, 2018, 25(11): 2935-2936.
|
17. |
Lund J, Larsen LH, Lauritzen L. Fish oil as a potential activator of brown and beige fat thermogenesis. Adipocyte, 2018, 7(2): 88-95.
|
18. |
He S, An Y, Li X, et al. In vivo metabolic imaging and monitoring of brown and beige fat. J Biophotonics, 2018, 11(8): e201800019.
|
19. |
Sustarsic EG, Ma T, Lynes MD, et al. Cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis. Cell Metab, 2018, 28(1): 159-174.
|
20. |
Sponton CH, Kajimura S. Multifaceted roles of beige fat in energy homeostasis beyond UCP1. Endocrinology, 2018, 159(7): 2545-2553.
|