1. |
Fouad K, Krajacic A, Tetzlaff W. Spinal cord injury and plasticity: opportunities and challenges. Brain Res Bull, 2011, 84(4-5): 337-342.
|
2. |
Holmes D. Spinal-cord injury: spurring regrowth. Nature, 2017, 552(7684): S49.
|
3. |
Tran AP, Warren PM, Silver J. The biology of regeneration failure and success after spinal cord injury. Physiol Rev, 2018, 98(2): 881-917.
|
4. |
Geng Y, Jiang J, Wu C. Function and clinical significance of circRNAs in solid tumors. J Hematol Oncol, 2018, 11(1): 98.
|
5. |
Kleaveland B, Shi CY, Stefano J, et al. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell, 2018, 174(2): 350-362.
|
6. |
Wang W, Liu R, Su Y, et al. MicroRNA-21-5p mediates TGF-β-regulated fibrogenic activation of spinal fibroblasts and the formation of fibrotic scars after spinal cord injury. Int J Biol Sci, 2018, 14(2): 178-188.
|
7. |
Liu R, Wang W, Wang S, et al. microRNA-21 regulates astrocytic reaction post-acute phase of spinal cord injury through modulating TGF-βsignaling. Aging (Albany NY), 2018, 10(6): 1474-1488.
|
8. |
Wang W, Tang S, Li H, et al. MicroRNA-21a-5p promotes fibrosis in spinal fibroblasts after mechanical trauma. Exp Cell Res, 2018, 370(1): 24-30.
|
9. |
Cristante AF, Barros Filho TE, Marcon RM, et al. Therapeutic approaches for spinal cord injury. Clinics (Sao Paulo), 2012, 67(10): 1219-1224.
|
10. |
Schwab JM, Maas AIR, Hsieh JTC, et al. Raising awareness for spinal cord injury research. Lancet Neurol, 2018, 17(7): 581-582.
|
11. |
Ning B, Gao L, Liu RH, et al. microRNAs in spinal cord injury: potential roles and therapeutic implications. Int J Biol Sci, 2014, 10(9): 997-1006.
|
12. |
Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature, 2012, 489(7414): 101-108.
|
13. |
Qu S, Yang X, Li X, et al. Circular RNA: A new star of noncoding RNAs. Cancer Lett, 2015, 365(2): 141-148.
|
14. |
Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol, 2013, 14(8): 475-488.
|
15. |
Stoicea N, Du A, Lakis DC, et al. The miRNA journey from theory to practice as a CNS biomarker. Front Genet, 2016, 7: 11.
|
16. |
Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression. PLoS Genet, 2013, 9(9): e1003777.
|
17. |
You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci, 2015, 18(4): 603-610.
|
18. |
Venø MT, Hansen TB, Venø ST, et al. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol, 2015, 16: 245.
|
19. |
Zhang Z, Yang T, Xiao J. Circular RNAs: promising biomarkers for human diseases. EBioMedicine, 2018, 34: 267-274.
|
20. |
Li TR, Jia YJ, Wang Q, et al. Circular RNA: a new star in neurological diseases. Int J Neurosci, 2017, 127(8): 726-734.
|
21. |
Hara M, Kobayakawa K, Ohkawa Y, et al. Interaction of reactive astrocytes with typeⅠcollagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury. Nat Med, 2017, 23(7): 818-828.
|
22. |
Catenaccio A, Llavero Hurtado M, Diaz P, et al. Molecular analysis of axonal-intrinsic and glial-associated co-regulation of axon degeneration. Cell Death Dis, 2017, 8(11): e3166.
|