1. |
Myung PS, Takeo M, Ito M, et al. Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration. J Invest Dermatol, 2013, 133(1): 31-41.
|
2. |
Clevers H, Loh KM, Nusse R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science, 2014, 346(6205): 1248012.
|
3. |
Martínez ML, Escario E, Poblet E, et al. Hair follicle-containing punch grafts accelerate chronic ulcer healing: A randomized controlled trial. J Am Acad Dermatol, 2016, 75(5): 1007-1014.
|
4. |
Seifert AW, Kiama SG, Seifert MG, et al. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature, 2012, 489(7417): 561-565.
|
5. |
Sun ZY, Diao JS, Guo SZ, et al. A very rare complication: new hair growth around healing wounds. J Int Med Res, 2009, 37(2): 583-586.
|
6. |
Wong TW, Hughes M, Wang SH. Never too old to regenerate? Wound induced hair follicle neogenesis after secondary intention healing in a geriatric patient J Tissue Viability, 2018, 27(2): 114-116.
|
7. |
Ito M, Yang Z, Andl T, et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature, 2007, 447(7142): 316-320.
|
8. |
Chuong CM. Regenerative biology: new hair from healing wounds. Nature, 2007, 447(7142): 265-266.
|
9. |
Fan C, Luedtke MA, Prouty SM, et al. Characterization and quantification of wound-induced hair follicle neogenesis using in vivo confocal scanning laser microscopy. Skin Res Technol, 2011, 17(4): 387-397.
|
10. |
Garza LA, Liu Y, Yang Z, et al. Prostaglandin D2 inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia. Sci Transl Med, 2012, 4(126): 126ra34.
|
11. |
Slominski A, Wortsman J, Plonka PM, et al. Hair follicle pigmentation. J Invest Dermatol, 2005, 124(1): 13-21.
|
12. |
Lough DM, Wetter N, Madsen C, et al. Transplantation of an LGR6+ epithelial stem cell-enriched scaffold for repair of full-thickness soft-tissue defects: the in vitro development of polarized hair-bearing skin. Plast Reconstr Surg, 2016, 137(2): 495-507.
|
13. |
Yuriguchi M, Aoki H, Taguchi N, et al. Pigmentation of regenerated hairs after wounding. J Dermatol Sci, 2016, 84(1): 80-87.
|
14. |
Kligman AM, Strauss JS. The formation of vellus hair follicles from human adult epidermis. J Invest Dermatol, 1956, 27(1): 19-23.
|
15. |
Driskell RR, Lichtenberger BM, Hoste E, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature, 2013, 504(7479): 277-281.
|
16. |
Gay D, Kwon O, Zhang Z, et al. Fgf9 from dermal γδ T cells induces hair follicle neogenesis after wounding. Nat Med, 2013, 19(7): 916-923.
|
17. |
Nelson AM, Katseff AS, Resnik SR, et al. Interleukin-6 null mice paradoxically display increased STAT3 activity and wound-induced hair neogenesis. J Invest Dermatol, 2016, 136(5): 1051-1053.
|
18. |
Nelson AM, Reddy SK, Ratliff TS, et al. dsRNA released by tissue damage activates TLR3 to drive skin regeneration. Cell Stem Cell, 2015, 17(2): 139-151.
|
19. |
Zhou G, Yuan C, He X, et al. Effect of miR-125b on dermal papilla cells of goat secondary hair follicle. Electron J Biotechn, 2017, 25: 64-69.
|
20. |
Gong L, Xu XG, Li YH. Embryonic-like regenerative phenomenon: wound-induced hair follicle neogenesis. Regen Med, 2018, 13(6): 729-739.
|
21. |
Myung P, Ito M. Dissecting the bulge in hair regeneration. J Clin Invest, 2012, 122(2): 448-454.
|
22. |
Fan SM, Tsai CF, Yen CM, et al. Inducing hair follicle neogenesis with secreted proteins enriched in embryonic skin. Biomaterials, 2018, 167: 121-131.
|
23. |
Morris RJ, Liu Y, Marles L, et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol, 2004, 22(4): 411-417.
|
24. |
Tumbar T, Guasch G, Greco V, et al. Defining the epithelial stem cell niche in skin. Science, 2004, 303(5656): 359-363.
|
25. |
Gonzales KAU, Fuchs E. Skin and its regenerative powers: an alliance between stem cells and their niche. Dev Cell, 2017, 43(4): 387-401.
|
26. |
Taylor G, Lehrer MS, Jensen PJ, et al. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell, 2000, 102(4): 451-461.
|
27. |
Watt FM. Mammalian skin cell biology: at the interface between laboratory and clinic. Science, 2014, 346(6212): 937-940.
|
28. |
Jensen KB, Collins CA, Nascimento E, et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell, 2009, 4(5): 427-439.
|
29. |
Snippert HJ, Haegebarth A, Kasper M, et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science, 2010, 327(5971): 1385-1389.
|
30. |
Wang X, Chen H, Tian R, et al. Macrophages induce AKT/β-catenin-dependent Lgr5 (+) stem cell activation and hair follicle regeneration through TNF. Nat Commun, 2017, 8: 14091.
|
31. |
Li L, Li W. Epithelial-mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther, 2015, 150: 33-46.
|
32. |
Skrypek N, Goossens S, De Smedt E, et al. Epithelial-to-mesenchymal transition: epigenetic reprogramming driving cellular plasticity. Trends Genet, 2017, 33(12): 943-959.
|
33. |
Sayed N, Wong WT, Ospino F, et al. Transdifferentiation of human fibroblasts to endothelial cells: role of innate immunity. Circulation, 2015, 131(3): 300-309.
|
34. |
Shaw T, Martin P. Epigenetic reprogramming during wound healing: loss of polycomb-mediated silencing may enable upregulation of repair genes. EMBO Rep, 2009, 10(8): 881-886.
|
35. |
Telerman SB, Rognoni E, Sequeira I, et al. Dermal Blimp1 acts downstream of epidermal TGFβ and Wnt/β-catenin to regulate hair follicle formation and growth. J Invest Dermatol, 2017, 137(11): 2270-2281.
|
36. |
Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell, 2012, 149(6): 1192-1205.
|
37. |
Choi YS, Zhang Y, Xu M, et al. Distinct functions for Wnt/β-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell, 2013, 13(6): 720-733.
|
38. |
Lien WH, Polak L, Lin M, et al. In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nat Cell Biol, 2014, 16(2): 179-190.
|
39. |
Bänziger C, Soldini D, Schütt C, et al. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell, 2006, 125(3): 509-522.
|
40. |
London TB, Lee HJ, Shao Y, et al. Interaction between the internal motif KTXXXI of Idax and mDvl PDZ domain. Biochem Biophys Res Commun, 2004, 322(1): 326-332.
|
41. |
Lee SH, Seo SH, Lee DH, et al. Targeting of CXXC5 by a competing peptide stimulates hair regrowth and wound-induced hair neogenesis. J Invest Dermatol, 2017, 137(11): 2260-2269.
|
42. |
Chen D, Jarrell A, Guo C, et al. Dermal β-catenin activity in response to epidermal Wnt ligands is required for fibroblast proliferation and hair follicle initiation. Development, 2012, 139(8): 1522-1533.
|
43. |
Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration. Nature, 2008, 453(7193): 314-321.
|
44. |
Chen P, Cescon M, Megighian A, et al. Collagen Ⅵ regulates peripheral nerve myelination and function. FASEB J, 2014, 28(3): 1145-1156.
|
45. |
Kasuya A, Ito T, Tokura Y. M2 macrophages promote wound-induced hair neogenesis. J Dermatol Sci, 2018, 91(3): 250-255.
|
46. |
Osaka N, Takahashi T, Murakami S, et al. ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. J Cell Biol, 2007, 176(7): 903-909.
|
47. |
Cressman DE, Greenbaum LE, DeAngelis RA, et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science, 1996, 274(5291): 1379-1383.
|
48. |
Hirota H, Kiyama H, Kishimoto T, et al. Accelerated nerve regeneration in mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma. J Exp Med, 1996, 183(6): 2627-2634.
|
49. |
Jia C. Advances in the regulation of liver regeneration. Expert Rev Gastroenterol Hepatol, 2011, 5(1): 105-121.
|
50. |
Galun E, Rose-John S. The Regenerative Activity of Interleukin-6//Clifton NJ. Methods in molecular biology. Totowa: Humana Press, 2013: 59-77.
|
51. |
Heinrich PC, Behrmann I, Haan S, et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J, 2003, 374(Pt 1): 1-20.
|
52. |
Lin Q, Wang L, Lin Y, et al. Toll-like receptor 3 ligand polyinosinic: polycytidylic acid promotes wound healing in human and murine skin. J Invest Dermatol, 2012, 132(8): 2085-2092.
|
53. |
Melkamu T, Kita H, O’Grady SM. TLR3 activation evokes IL-6 secretion, autocrine regulation of Stat3 signaling and TLR2 expression in human bronchial epithelial cells. J Cell Commun Signal, 2013, 7(2): 109-118.
|
54. |
Sakakibara S, Nakamura Y, Satoh H, et al. Rna-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS. J Neurosci, 2001, 21(20): 8091-8107.
|
55. |
Kharas MG, Lengner CJ, Al-Shahrour F, et al. Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nat Med, 2010, 16(8): 903-908.
|
56. |
Ito T, Kwon HY, Zimdahl B, et al. Regulation of myeloid leukaemia by the cell-fate determinant Musashi. Nature, 2010, 466(7307): 765-768.
|
57. |
Park SM, Deering RP, Lu Y, et al. Musashi-2 controls cell fate, lineage bias, and TGF-β signaling in HSCs. J Exp Med, 2014, 211(1): 71-87.
|
58. |
Wang S, Li N, Yousefi M, et al. Transformation of the intestinal epithelium by the MSI2 RNA-binding protein. Nat Commun, 2015, 6: 6517.
|
59. |
Rentas S, Holzapfel N, Belew MS, et al. Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells. Nature, 2016, 532(7600): 508-511.
|
60. |
Sugiyama-Nakagiri Y, Akiyama M, Shibata S, et al. Expression of RNA-binding protein Musashi in hair follicle development and hair cycle progression. Am J Pathol, 2006, 168(1): 80-92.
|
61. |
Ma X, Tian Y, Song Y, et al. Msi2 maintains quiescent state of hair follicle stem cells by directly repressing the Hh signaling pathway. J Invest Dermatol, 2017, 137(5): 1015-1024.
|
62. |
Zhu AS, Li A, Ratliff TS, et al. After skin wounding, noncoding dsRNA coordinates prostaglandins and Wnts to promote regeneration. J Invest Dermatol, 2017, 137(7): 1562-1568.
|
63. |
Hughes MW, Jiang TX, Plikus MV, et al. Msx2 supports epidermal competency during wound-induced hair follicle neogenesis. J Invest Dermatol, 2018, 138(9): 2041-2050.
|
64. |
Kim D, Chen R, Sheu M, et al. Noncoding dsRNA induces retinoic acid synthesis to stimulate hair follicle regeneration via TLR3. Nat Commun, 2019, 10(1): 2811.
|
65. |
Tan QW, Tang SL, Zhang Y, et al. Hydrogel from acellular porcine adipose tissue accelerates wound healing by inducing intradermal adipocyte regeneration. J Invest Dermatol, 2019, 139(2): 455-463.
|
66. |
Gur-Cohen S, Yang H, Baksh SC, et al. Stem cell-driven lymphatic remodeling coordinates tissue regeneration. Science, 2019, 366(6470): 1218-1225.
|
67. |
侯玉森, 段红杰, 刘玲英, 等. MSCs 修复烧伤创面的研究进展. 中国修复重建外科杂志, 2013, 27(5): 571-574.
|
68. |
熊佳超, 宋建星. 脂肪来源干细胞治疗难愈性创面的研究进展. 中国修复重建外科杂志, 2018, 32(4): 457-461.
|