1. |
Veronesi F, Tschon M, Fini M, et al. Gene expression in osteolysis: review on the identification of altered molecular pathways in preclinical and clinical studies. Int J Mol Sci, 2017, 18(3): E499.
|
2. |
Patel A, Pavlou G, Mújica-Mota RE, et al. The epidemiology of revision total knee and hip arthroplasty in England and Wales: a comparative analysis with projections for the United States. A study using the National Joint Registry dataset. Bone Joint J, 2015, 97-B(8): 1076-1081.
|
3. |
Purdue PE, Koulouvaris P, Potter HG, et al. The cellular and molecular biology of periprosthetic osteolysis. Clin Orthop Relat Res, 2007, (454): 251-261.
|
4. |
Hirakawa K, Jacobs JJ, Urban R, et al. Mechanisms of failure of total hip replacements: lessons learned from retrieval studies. Clin Orthop Relat Res, 2004, (420): 10-17.
|
5. |
Tucci M, Tsao A, Hughes J Jr. Analysis of capsular tissue from patients undergoing primary and revision total hip arthroplasty. Biomed Sci Instrum, 1996, 32: 119-125.
|
6. |
Korda M, Blunn G, Goodship A, et al. Use of mesenchymal stem cells to enhance bone formation around revision hip replacements. J Orthop Res, 2008, 26(6): 880-885.
|
7. |
Kalia P, Coathup MJ, Oussedik S, et al. Augmentation of bone growth onto the acetabular cup surface using bone marrow stromal cells in total hip replacement surgery. Tissue Eng Part A, 2009, 15(12): 3689-3696.
|
8. |
Skurla CP, James SP. Assessing the dog as a model for human total hip replacement: analysis of 38 postmortem-retrieved canine cemented acetabular components. J Biomed Mater Res B Appl Biomater, 2005, 73(2): 260-270.
|
9. |
Hu B, Cai XZ, Shi ZL, et al. Microbubble injection enhances inhibition of low-intensity pulsed ultrasound on debris-induced periprosthetic osteolysis in rabbit model. Ultrasound Med Biol, 2015, 41(1): 177-186.
|
10. |
Shang JY, Zhan P, Jiang C, et al. Inhibitory effects of lanthanum chloride on wear particle-induced osteolysis in a mouse calvarial model. Biol Trace Elem Res, 2016, 169(2): 303-309.
|
11. |
Córdova LA, Trichet V, Escriou V, et al. Inhibition of osteolysis and increase of bone formation after local administration of siRNA-targeting RANK in a polyethylene particle-induced osteolysis mode. Acta Biomater, 2015, 13: 150-158.
|
12. |
张雨笛, 严明, 俞立虹, 等. PI3K/Akt 信号通路在磷酸三钙磨损颗粒诱导小鼠颅骨溶解中的作用. 中国运动医学杂志, 2017, 36(3): 212-217.
|
13. |
Inacio MC, Ake CF, Paxton EW, et al. Sex and risk of hip implant failure: assessing total hip arthroplasty outcomes in the United States. JAMA Intern Med, 2013, 173(6): 435-441.
|
14. |
魏均强, 蔡谞, 王岩, 等. 人工关节无菌性松动的发生和防治. 中国修复重建外科杂志, 2010, 24(3): 296-300.
|
15. |
Gallo J, Goodman SB, Konttinen YT, et al. Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms. Acta Biomater, 2013, 9(9): 8046-8058.
|
16. |
Cadosch D, Gautschi OP, Chan E, et al. Titanium induced production of chemokines CCL17/TARC and CCL22/MDC in human osteoclasts and osteoblasts. J Biomed Mater Res A, 2010, 92(2): 475-483.
|
17. |
Greenfield EM, Bi Y, Ragab AA, et al. The role of osteoclast differentiation in aseptic loosening. J Orthop Res, 2002, 20(1): 1-8.
|
18. |
杨涛, 谢杰, 胡懿郃, 等. 354 例 Ribbed 股骨柄假体置换术的中远期疗效分析. 中国修复重建外科杂志, 2019, 33(9): 1116-1120.
|
19. |
武文, 严孟宁, 朱振安, 等. 无菌性松动人工全髋关节假体周围界膜组织血管化的研究. 中国修复重建外科杂志, 2016, 30(1): 39-43.
|
20. |
巩栋, 吴国泰, 甄平. 假体周围骨溶解动物模型的研究概况. 中国组织工程研究, 2018, 22(15): 2421-2426.
|
21. |
Cuckler JM, Bearcroft J, Asgian CM. Femoral head technologies to reduce polyethylene wear in total hip arthroplasty. Clin Orthop Relat Res, 1995, (317): 57-63.
|
22. |
Ren W, Markel DC, Schwendener R, et al. Macrophage depletion diminishes implant-wear-induced inflammatory osteolysis in a mouse model. J Biomed Mater Res A, 2008, 85(4): 1043-1051.
|
23. |
Warme BA, Epstein NJ, Trindade MC, et al. Proinflammatory mediator expression in a novel murine model of titanium-particle-induced intramedullary inflammation. J Biomed Mater Res B Appl Biomater, 2004, 71(2): 360-366.
|
24. |
Ma T, Ortiz S, Huang Z, et al. In vivo murine model of continuous intramedullary infusion of particles—a preliminary study. J Biomed Mater Res B Appl Biomater, 2009, 88(1): 250-253.
|
25. |
Man K, Jiang LH, Foster R, et al. Immunological responses to total hip arthroplasty. J Funct Biomater, 2017, 8(3): E33.
|
26. |
Dyskova T, Gallo J, Kriegova E. The role of the chemokine system in tissue response to prosthetic by-products leading to periprosthetic osteolysis and aseptic loosening. Front Immunol, 2017, 8: 1026.
|
27. |
Wang Z, Liu N, Liu K, et al. Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis. Autophagy, 2015, 11(12): 2358-2369.
|
28. |
王伟. 磨损颗粒与人工关节骨溶解的相关研究. 中国骨与关节损伤杂志, 2017, 32(4): 446-448.
|
29. |
Zhang T, Yu H, Gong W, et al. The effect of osteoprotegerin gene modification on wear debris-induced osteolysis in a murine model of knee prosthesis failure. Biomaterials, 2009, 30(30): 6102-6108.
|
30. |
Ren W, Zhang R, Hawkins M, et al. Efficacy of periprosthetic erythromycin delivery for wear debris-induced inflammation and osteolysis. Inflamm Res, 2010, 59(12): 1091-1097.
|
31. |
Jämsen E, Kouri VP, Olkkonen J, et al. Characterization of macrophage polarizing cytokines in the aseptic loosening of total hip replacements. J Orthop Res, 2014, 32(9): 1241-1246.
|