1. |
Laschke MW, Harder Y, Amon M, et al. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng, 2006, 12(8): 2093-2104.
|
2. |
Auger FA, Gibot L, Lacroix D. The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng, 2013, 15: 177-200.
|
3. |
Moon JJ, West JL. Vascularization of engineered tissues: approaches to promote angiogenesis in biomaterials. Curr Top Med Chem, 2008, 8(4): 300-310.
|
4. |
殷建, 王斌, 朱超, 等. 局部注射促血管生成素 2 调控自噬促进体内组织工程人工骨早期血管化和骨缺损修复的研究. 中国修复重建外科杂志, 2018, 32(9): 1150-1156.
|
5. |
Maes C, Carmeliet G, Schipani E. Hypoxia-driven pathways in bone development, regeneration and disease. Nat Rev Rheumatol, 2012, 8(6): 358-366.
|
6. |
Sun X, Wei Y. The role of hypoxia-inducible factor in osteogenesis and chondrogenesis. Cytotherapy, 2009, 11(3): 261-267.
|
7. |
葛礼豪, 于德水, 苏瑞超, 等. 缺氧诱导因子 1α 对人羊膜间充质干细胞耐受缺氧能力影响的实验研究. 中国修复重建外科杂志, 2018, 32(3): 264-269.
|
8. |
Zhu J, Tang Y, Wu Q, et al. HIF-1α facilitates osteocyte-mediated osteoclastogenesis by activating JAK2/STAT3 pathway in vitro. J Cell Physiol, 2019, 234(11): 21182-21192.
|
9. |
Zhang Y, Huang J, Wang C, et al. Application of HIF-1α by gene therapy enhances angiogenesis and osteogenesis in alveolar bone defect regeneration. J Gene Med, 2016, 18(4-6): 57-64.
|
10. |
张丹, 任利玲. 缺氧诱导因子 1α 在组织工程成骨和成血管中的作用. 中国修复重建外科杂志, 2016, 30(4): 504-508.
|
11. |
于鹏杰, 燕速. 体外模拟低氧微环境对人胃癌细胞侵袭、迁移及 Ras/MAPK/NF-κB 通路的影响. 中国临床研究, 2019, 32(7): 907-910, 914.
|
12. |
李玢, 程辰, 李华, 等. 低氧模拟剂预处理提高预构皮瓣成活率的实验研究. 组织工程与重建外科杂志, 2019, 15(3): 142-145, 151.
|
13. |
Saito T, Tabata Y. Hypoxia-induced angiogenesis is increased by the controlled release of deferoxiamine from gelatin hydrogels. Acta Biomater, 2014, 10(8): 3641-3649.
|
14. |
郑胜武, 杜子婧, 黄雄梅, 等. 去铁胺促进 BMSCs 靶向归巢和血管新生的实验研究. 中国修复重建外科杂志, 2019, 33(1): 85-92.
|
15. |
Guzey S, Aykan A, Ozturk S, et al. The effects of desferroxamine on bone and bone graft healing in critical-size bone defects. Ann Plast Surg, 2016, 77(5): 560-568.
|
16. |
Sun Y, Jiang Y, Liu Q, et al. Biomimetic engineering of nanofibrous gelatin scaffolds with noncollagenous proteins for enhanced bone regeneration. Tissue Eng Part A, 2013, 19(15-16): 1754-1763.
|
17. |
Yao Q, Liu Y, Tao J, et al. Hypoxia-mimicking nanofibrous scaffolds promote endogenous bone regeneration. ACS Appl Mater Interfaces, 2016, 8(47): 32450-32459.
|
18. |
Yao Q, Liu Y, Selvaratnam B, et al. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. J Control Release, 2018, 279: 69-78.
|
19. |
皮偲. 改良式给药方式应用于输血相关性铁过载的临床疗效分析. 中国处方药, 2020, 18(3): 138-139.
|
20. |
Drager J, Ramirez-GarciaLuna JL, Kumar A, et al. Hypoxia biomimicry to enhance monetite bone defect repair. Tissue Eng Part A, 2017, 23(23-24): 1372-1381.
|
21. |
Hadidi L, Constantin J, Dalisson B, et al. Biodegradable hypoxia biomimicry microspheres for bone tissue regeneration. J Biomater Appl, 2020, 34(7): 1028-1037.
|
22. |
Leonard SS, Harris GK, Shi X. Metal-induced oxidative stress and signal transduction. Free Radic Biol Med, 2004, 37(12): 1921-1942.
|
23. |
Wu C, Zhou Y, Fan W, et al. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials, 2012, 33(7): 2076-2085.
|
24. |
Yoshizawa S, Brown A, Barchowsky A, et al. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater, 2014, 10(6): 2834-2842.
|
25. |
Fu OY, Hou MF, Yang SF, et al. Cobalt chloride-induced hypoxia modulates the invasive potential and matrix metalloproteinases of primary and metastatic breast cancer cells. Anticancer Res, 2009, 29(8): 3131-3138.
|
26. |
Kulanthaivel S, Roy B, Agarwal T, et al. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application. Mater Sci Eng C Mater Biol Appl, 2016, 58: 648-658.
|
27. |
Quinlan E, Partap S, Azevedo MM, et al. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials, 2015, 52: 358-366.
|
28. |
Stähli C, Muja N, Nazhat SN. Controlled copper ion release from phosphate-based glasses improves human umbilical vein rndothelial cell survival in a reduced nutrient environment. Tissue Eng Pt A, 2013, 19(3-4): 548-557.
|
29. |
Ewald A, Käppel C, Vorndran E, et al. The effect of Cu (Ⅱ)-loaded brushite scaffolds on growth and activity of osteoblastic cells. J Biomed Mater Res A, 2012, 100(9): 2392-2400.
|
30. |
Rigiracciolo DC, Scarpelli A, Lappano R, et al. Copper activates HIF-1α/GPER/VEGF signalling in cancer cells. Oncotarget, 2015, 6(33): 34158-34177.
|
31. |
Urso E, Maffia M. Behind the link between copper and angiogenesis: established mechanisms and an overview on the role of vascular copper transport systems. J Vasc Res, 2015, 52(3): 172-196.
|
32. |
Li Y, Wang J, Wang Y, et al. Transplantation of copper-doped calcium polyphosphate scaffolds combined with copper (Ⅱ) preconditioned bone marrow mesenchymal stem cells for bone defect repair. J Biomater Appl, 2018, 32(6): 738-753.
|
33. |
王松, 杨函, 杨剑, 等. 多孔磷酸钙/骨基质明胶复合骨水泥修复兔腰椎骨缺损的实验研究. 中国修复重建外科杂志, 2017, 31(12): 1462-1467.
|
34. |
崔鑫涛, 杨显声, 迟志永, 等. 聚磷酸钙纤维增强磷酸钙骨水泥复合骨髓间充质干细胞构建人工骨. 中国组织工程研究, 2019, 23(1): 74-78.
|
35. |
Zhang W, Chang Q, Xu L, et al. Graphene oxide-copper nanocomposite-coated porous CaP scaffold for vascularized bone regeneration via activation of Hif-1α. Adv Healthc Mater, 2016, 5(11): 1299-1309.
|
36. |
Wu C, Zhou Y, Xu M, et al. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials, 2013, 34(2): 422-433.
|
37. |
Wang W, Liu Y, Yang C, et al. Mesoporous bioactive glass combined with graphene oxide scaffolds for bone repair. Int J Biol Sci, 2019, 15(10): 2156-2169.
|
38. |
El-Fiqi A, Kim TH, Kim M, et al. Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules. Nanoscale, 2012, 4(23): 7475-7488.
|
39. |
Li Y, Han W, Wu Y, et al. Stabilization of hypoxia inducible factor-1α by dimethyloxalylglycine oromotes recovery from acute spinal cord injury by inhibiting neural apoptosis and enhancing axon regeneration. J Neurotrauma, 2019, 36(24): 3394-3409.
|
40. |
张磊, 龚跃昆, 赵学凌, 等. 低氧与低氧模拟剂对 BMSCs 成骨分化影响的对比研究. 中国修复重建外科杂志, 2016, 30(7): 903-908.
|
41. |
Jahangir S, Hosseini S, Mostafaei F, et al. 3D-porous β-tricalcium phosphate-alginate-gelatin scaffold with DMOG delivery promotes angiogenesis and bone formation in rat calvarial defects. J Mater Sci Mater Med, 2018, 30(1): 1.
|
42. |
Eslaminejad MB, Mirzadeh H, Mohamadi Y, et al. Bone differentiation of marrow-derived mesenchymal stem cells using beta-tricalcium phosphate-alginate-gelatin hybrid scaffolds. J Tissue Eng Regen Med, 2007, 1(6): 417-424.
|
43. |
Wu C, Zhou Y, Chang J, et al. Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells. Acta Biomater, 2013, 9(11): 9159-9168.
|
44. |
Kim SY, Yang EG. Recent advances in developing inhibitors for hypoxia-inducible factor prolyl hydroxylases and their therapeutic implications. Molecules, 2015, 20(11): 20551-20568.
|
45. |
Provenzano R, Besarab A, Sun CH, et al. Oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) for the treatment of anemia in patients with CKD. Clin J Am Soc Nephrol, 2016, 11(6): 982-991.
|
46. |
Zhou M, Hou J, Li Y, et al. The pro-angiogenic role of hypoxia inducible factor stabilizer FG-4592 and its application in an in vivo tissue engineering chamber model. Sci Rep, 2019, 9(1): 6035.
|
47. |
Thirunavukkarasu M, Selvaraju V, Dunna NR, et al. Simvastatin treatment inhibits hypoxia inducible factor 1-alpha-(HIF-1alpha)-prolyl-4-hydroxylase 3(PHD-3) and increases angiogenesis after myocardial infarction in streptozotocin-induced diabetic rat. Int J Cardiol, 2013, 168(3): 2474-2480.
|
48. |
Yu WL, Sun TW, Qi C, et al. Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheres-derived simvastatin sustained release system for superior bone regeneration. Sci Rep, 2017, 7: 44129.
|
49. |
Tan B, Luo Z, Yue Y, et al. Effects of FTY720 (Fingolimod) on proliferation, differentiation, and migration of brain-derived neural stem cells. Stem Cells Int, 2016, 2016: 9671732.
|
50. |
Li S, Song C, Yang S, et al. Supercritical CO2 foamed composite scaffolds incorporating bioactive lipids promote vascularized bone regeneration via Hif-1alpha upregulation and enhanced type H vessel formation. Acta Biomater, 2019, 94: 253-267.
|
51. |
Chen X, Gu S, Chen BF, et al. Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials, 2015, 53: 239-250.
|