1. |
Hurley ET, Maye AB, Mullett H. Arthroscopic rotator cuff repair: a systematic review of overlapping meta-analyses. JBJS Rev, 2019, 7(4): e1.
|
2. |
Li X, Cheng R, Sun Z, et al. Flexible bipolar nanofibrous membranes for improving gradient microstructure in tendon-to-bone healing. Acta Biomater, 2017, 61: 204-216.
|
3. |
Tsekes D, Konstantopoulos G, Khan WS, et al. Use of stem cells and growth factors in rotator cuff tendon repair. Eur J Orthop Surg Traumatol, 2019, 29(4): 747-757.
|
4. |
潘娟, 刘国明, 宁良菊, 等. 脱细胞肌腱片促进兔肩袖损伤腱-骨愈合的实验研究. 中国修复重建外科杂志, 2013, 27(9): 1070-1075.
|
5. |
He P, Ng KS, Toh SL, et al. In vitro ligament-bone interface regeneration using a trilineage coculture system on a hybrid silk scaffold. Biomacromolecules, 2012, 13(9): 2692-2703.
|
6. |
Sanzenbacher R, Dwenger A, Schuessler-Lenz M, et al. European regulation tackles tissue engineering. Nat Biotechnol, 2007, 25(10): 1089-1091.
|
7. |
Min HK, Oh SH, Lee JM, et al. Porous membrane with reverse gradients of PDGF-BB and BMP-2 for tendon-to-bone repair: in vitro evaluation on adipose-derived stem cell differentiation. Acta Biomater, 2014, 10(3): 1272-1279.
|
8. |
Narayanan G, Nair LS, Laurencin CT. Regenerative engineering of the rotator cuff of the shoulder. ACS Biomaterials Science & Engineering, 2018, 4(3): 751-786.
|
9. |
高超, 李超明, 徐玉龙, 等. 静电纺丝聚己内酯/Ⅰ型胶原纳米纤维取向性补片用于肩袖修复. 中国修复重建外科杂志, 2019, 33(5): 628-633.
|
10. |
Zhu Q, Ma Z, Li H, et al. Enhancement of rotator cuff tendon-bone healing using combined aligned electrospun fibrous membranes and kartogenin. RSC Advances, 2019, 9(27): 15582-15592.
|
11. |
Bilsel K, Yildiz F, Kapicioglu M, et al. Efficacy of bone marrow-stimulating technique in rotator cuff repair. J Shoulder Elbow Surg, 2017, 26(8): 1360-1366.
|
12. |
Kon E, Filardo G, Perdisa F, et al. Acellular matrix-based cartilage regeneration techniques for osteochondral repair. Operative Techniques in Orthopaedics, 2014, 24(1): 14-18.
|
13. |
Degirmenci E, Ozturan KE, Sahin AA, et al. Effects of tranexamic acid on the recovery of osteochondral defects treated by microfracture and acellular matrix scaffold: an experimental study. J Orthop Surg Res, 2019, 14(1): 105.
|
14. |
马潞, 田猛. 可注射明胶原位水凝胶作为脱钙骨基质粉末输送载体可行性的初步研究. 中国修复重建外科杂志, 2017, 31(3): 300-305.
|
15. |
Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015, 73: 254-271.
|
16. |
Van Den Bulcke AI, Bogdanov B, De Rooze N, et al. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 2000, 1(1): 31-38.
|
17. |
Ide J, Kikukawa K, Hirose J, et al. Reconstruction of large rotator-cuff tears with acellular dermal matrix grafts in rats. J Shoulder Elbow Surg, 2009, 18(2): 288-295.
|
18. |
Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Adv Drug Deliv Rev, 2015, 94: 126-140.
|
19. |
费文勇, 郭卫春. 成体干细胞技术促肩袖损伤修复实验研究进展. 国际骨科学杂志, 2015, 36(1): 45-48.
|
20. |
Rothrauff BB, Tuan RS. Cellular therapy in bone-tendon interface regeneration. Organogenesis, 2014, 10(1): 13-28.
|
21. |
Girlovanu M, Susman S, Soritau O, et al. Stem cells-biological update and cell therapy progress. Clujul Med, 2015, 88(3): 265-271.
|
22. |
Kida Y, Morihara T, Matsuda K, et al. Bone marrow-derived cells from the footprint infiltrate into the repaired rotator cuff. J Shoulder Elbow Surg, 2013, 22(2): 197-205.
|
23. |
Milano G, Saccomanno MF, Careri S, et al. Efficacy of marrow-stimulating technique in arthroscopic rotator cuff repair: a prospective randomized study. Arthroscopy, 2013, 29(5): 802-810.
|
24. |
Snyder SJ, Burns J. Rotator cuff healing and the bone marrow “Crimson Duvet” from clinical observations to science. Techniques in Shoulder and Elbow Surgery, 2009, 10(4): 130-137.
|
25. |
Tornero-Esteban P, Hoyas JA, Villafuertes E, et al. Efficacy of supraspinatus tendon repair using mesenchymal stem cells along with a collagen Ⅰ scaffold. J Orthop Surg Res, 2015, 10: 124.
|
26. |
谭可可, 王秀秀, 张君, 等. 壳聚糖多孔支架复合 BMSCs 移植修复大鼠创伤性脑损伤的实验研究. 中国修复重建外科杂志, 2018, 32(6): 745-752.
|
27. |
Lau TT, Wang DA. Bioresponsive hydrogel scaffolding systems for 3D constructions in tissue engineering and regenerative medicine. Nanomedicine (Lond), 2013, 8(4): 655-668.
|
28. |
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27): 5474-5491.
|
29. |
Gulotta LV, Rodeo SA. Growth factors for rotator cuff repair. Clin Sports Med, 2009, 28(1): 13-23.
|
30. |
Dai Y, Liu G, Ma L, et al. Cell-free macro-porous fibrin scaffolds for in situ inductive regeneration of full-thickness cartilage defects. J Mater Chem B, 2016, 4(25): 4410-4419.
|
31. |
Sofu H, Kockara N, Oner A, et al. Results of hyaluronic acid-based cell-free scaffold application in combination with microfracture for the treatment of osteochondral lesions of the knee: 2-year comparative study. Arthroscopy, 2017, 33(1): 209-216.
|