1. |
Arokoski JP, Jurvelin JS, Väätäinen U, et al. Normal and pathological adaptations of articular cartilage to joint loading. Scand J Med Sci Sports, 2000, 10(4): 186-198.
|
2. |
廖德发. 我国骨性关节炎流行病学调查现状. 微创医学, 2017, 12(4): 521-524.
|
3. |
Santoso MB, Wu L. Unicompartmental knee arthroplasty, is it superior to high tibial osteotomy in treating unicompartmental osteoarthritis? A meta-analysis and systemic review. J Orthop Surg Res, 2017, 12(1): 50. doi: 10.1186/s13018-017-0552-9.
|
4. |
Kang KT, Son J, Kwon SK, et al. Preservation of femoral and tibial coronal alignment to improve biomechanical effects of medial unicompartment knee arthroplasty: Computational study. Biomed Mater Eng, 2018, 29(5): 651-664.
|
5. |
Besier TF, Gold GE, Beaupré GS, et al. A modeling framework to estimate patellofemoral joint cartilage stress in vivo. Med Sci Sports Exerc, 2005, 37(11): 1924-1930.
|
6. |
Innocenti B, Pianigiani S, Ramundo G, et al. Biomechanical effects of different varus and valgus alignments in medial unicompartmental knee arthroplasty. J Arthroplasty, 2016, 31(12): 2685-2691.
|
7. |
Collier MB, Eickmann TH, Sukezaki F, et al. Patient, implant, and alignment factors associated with revision of medial compartment unicondylar arthroplasty. J Arthroplasty, 2006, 21(6 Suppl 2): 108-115.
|
8. |
Sawatari T, Tsumura H, Iesaka K, et al. Three-dimensional finite element analysis of unicompartmental knee arthroplasty—the influence of tibial component inclination. J Orthop Res, 2005, 23(3): 549-554.
|
9. |
Heyse TJ, El-Zayat BF, De Corte R, et al. Balancing UKA: overstuffing leads to high medial collateral ligament strains. Knee Surg Sports Traumatol Arthrosc, 2016, 24(10): 3218-3228.
|
10. |
Au AG, Raso VJ, Liggins AB, et al. A three-dimensional finite element stress analysis for tunnel placement and buttons in anterior cruciate ligament reconstructions. J Biomech, 2005, 38(4): 827-832.
|
11. |
Zhu GD, Guo WS, Zhang QD, et al. Finite element analysis of mobile-bearing unicompartmental knee arthroplasty: the influence of tibial component coronal alignment. Chin Med J (Engl), 2015, 128(21): 2873-2878.
|
12. |
Kwon OR, Kang KT, Son J, et al. Biomechanical comparison of fixed- and mobile-bearing for unicomparmental knee arthroplasty using finite element analysis. J Orthop Res, 2014, 32(2): 338-345.
|
13. |
Sasatani K, Majima T, Murase K, et al. Three-dimensional finite analysis of the optimal alignment of the tibial implant in unicompartmental knee arthroplasty. J Nippon Med Sch, 2020, 87(2): 60-65.
|
14. |
Dai X, Fang J, Jiang L, et al. How does the inclination of the tibial component matter? A three-dimensional finite element analysis of medial mobile-bearing unicompartmental arthroplasty. Knee, 2018, 25(3): 434-444.
|
15. |
Hernigou P, Deschamps G. Posterior slope of the tibial implant and the outcome of unicompartmental knee arthroplasty. J Bone Joint Surg (Am), 2004, 86(3): 506-511.
|
16. |
Garg A, Walker PS. Prediction of total knee motion using a three-dimensional computer-graphics model. J Biomech, 1990, 23(1): 45-58.
|
17. |
Weber P, Woiczinski M, Steinbruck A, et al. Increase in the tibial slope in unicondylar knee replacement: analysis of the effect on the kinematics and ligaments in a weight-bearing finite element model. Biomed Res Int, 2018, 2018: 8743604. doi: 10.1155/2018/8743604.
|
18. |
Kang KT, Park JH, Koh YG, et al. Biomechanical effects of posterior tibial slope on unicompartmental knee arthroplasty using finite element analysis. Biomed Mater Eng, 2019, 30(2): 133-144.
|
19. |
Kang KT, Kim SH, Son J, et al. Validation of a computational knee joint model using an alignment method for the knee laxity test and computed tomography. Biomed Mater Eng, 2017, 28(4): 417-429.
|
20. |
Godest AC, Beaugonin M, Haug E, et al. Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J Biomech, 2002, 35(2): 267-275.
|
21. |
Aleto TJ, Berend ME, Ritter MA, et al. Early failure of unicompartmental knee arthroplasty leading to revision. J Arthroplasty, 2008, 23(2): 159-163.
|
22. |
Bell SW, Anthony I, Jones B, et al. Improved accuracy of component positioning with robotic-assisted unicompartmental knee arthroplasty: data from a prospective, randomized controlled study. J Bone Joint Surg (Am), 2016, 98(8): 627-635.
|
23. |
Kang KT, Son J, Koh YG, et al. Effect of femoral component position on biomechanical outcomes of unicompartmental knee arthroplasty. Knee, 2018, 25(3): 491-498.
|
24. |
Kang KT, Son J, Baek C, et al. Femoral component alignment in unicompartmental knee arthroplasty leads to biomechanical change in contact stress and collateral ligament force in knee joint. Arch Orthop Trauma Surg, 2018, 138(4): 563-572.
|
25. |
Park KK, Koh YG, Park KM, et al. Biomechanical effect with respect to the sagittal positioning of the femoral component in unicompartmental knee arthroplasty. Biomed Mater Eng, 2019, 30(2): 171-182.
|
26. |
Hopgood P, Martin CP, Rae PJ. The effect of tibial implant size on post-operative alignment following medial unicompartmental knee replacement. Knee, 2004, 11(5): 385-388.
|
27. |
Porteous AJ, Hassaballa MA, Newman JH. Does the joint line matter in revision total knee replacement? J Bone Joint Surg (Br), 2008, 90(7): 879-884.
|
28. |
Kang KT, Kwon OR, Son J, et al. Effect of joint line preservation on mobile-type bearing unicompartmental knee arthroplasty: finite element analysis. Australas Phys Eng Sci Med, 2018, 41(1): 201-208.
|
29. |
Kwon OR, Kang KT, Son J, et al. Importance of joint line preservation in unicompartmental knee arthroplasty: Finite element analysis. J Orthop Res, 2017, 35(2): 347-352.
|
30. |
Weber P, Schröder C, Laubender RP, et al. Joint line reconstruction in medial unicompartmental knee arthroplasty: development and validation of a measurement method. Knee Surg Sports Traumatol Arthrosc, 2013, 21(11): 2468-2473.
|
31. |
Kang KT, Son J, Suh DS, et al. Patient-specific medial unicompartmental knee arthroplasty has a greater protective effect on articular cartilage in the lateral compartment: A Finite Element Analysis. Bone Joint Res, 2018, 7(1): 20-27.
|
32. |
Patil S, Bunn A, Bugbee WD, et al. Patient-specific implants with custom cutting blocks better approximate natural knee kinematics than standard TKA without custom cutting blocks. Knee, 2015, 22(6): 624-629.
|
33. |
van den Heever DJ, Scheffer C, Erasmus P, et al. Contact stresses in a patient-specific unicompartmental knee replacement. Clin Biomech (Bristol, Avon), 2011, 26(2): 159-166.
|
34. |
Carpenter DP, Holmberg RR, Quartulli MJ, et al. Tibial plateau coverage in UKA: a comparison of patient specific and off-the-shelf implants. J Arthroplasty, 2014, 29(9): 1694-1698.
|
35. |
Danese I, Pankaj P, Scott CEH. The effect of malalignment on proximal tibial strain in fixed-bearing unicompartmental knee arthroplasty: A comparison between metal-backed and all-polyethylene components using a validated finite element model. Bone Joint Res, 2019, 8(2): 55-64.
|
36. |
Sano M, Oshima Y, Murase K, et al. Finite-element analysis of stress on the proximal tibia after unicompartmental knee arthroplasty. J Nippon Med Sch, 2020, 87(5): 260-267.
|
37. |
Koh YG, Park KM, Lee HY, et al. Influence of tibiofemoral congruency design on the wear of patient-specific unicompartmental knee arthroplasty using finite element analysis. Bone Joint Res, 2019, 8(3): 156-164.
|
38. |
Koh YG, Lee JA, Lee HY, et al. Anatomy-mimetic design preserves natural kinematics of knee joint in patient-specific mobile-bearing unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2020, 28(5): 1465-1472.
|