- Trauma Clinic Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, P.R.China;
Citation: PENG Ying, LIN Haodong. Regulatory role of long non-coding RNA in peripheral nerve injury and neural regeneration. Chinese Journal of Reparative and Reconstructive Surgery, 2021, 35(8): 1051-1056. doi: 10.7507/1002-1892.202103107 Copy
1. | Grinsell D, Keating CP. Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int, 2014, 2014: 698256. doi: 10.1155/2014/698256. |
2. | Sun F, He Z. Neuronal intrinsic barriers for axon regeneration in the adult CNS. Curr Opin Neurobiol, 2010, 20(4): 510-518. |
3. | Cobianchi S, Jaramillo J, Luvisetto S, et al. Botulinum neurotoxin A promotes functional recovery after peripheral nerve injury by increasing regeneration of myelinated fibers. Neuroscience, 2017, 359: 82-91. |
4. | Weng J, Zhang P, Yin X, et al. The whole transcriptome involved in denervated muscle atrophy following peripheral nerve injury. Front Mol Neurosci, 2018, 11: 69. doi: 10.3389/fnmol.2018.00069. |
5. | Menorca RM, Fussell TS, Elfar JC. Nerve physiology: mechanisms of injury and recovery. Hand Clin, 2013, 29(3): 317-330. |
6. | Mahar M, Cavalli V. Intrinsic mechanisms of neuronal axon regeneration. Nat Rev Neurosci, 2018, 19(6): 323-337. |
7. | Curtis R, Scherer SS, Somogyi R, et al. Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve. Neuron, 1994, 12(1): 191-204. |
8. | Taga T, Kishimoto T. Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol, 1997, 15: 797-819. |
9. | Schweizer U, Gunnersen J, Karch C, et al. Conditional gene ablation of Stat3 reveals differential signaling requirements for survival of motoneurons during development and after nerve injury in the adult. J Cell Biol, 2002, 156(2): 287-297. |
10. | Qiu J, Cafferty WB, McMahon SB, et al. Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. J Neurosci, 2005, 25(7): 1645-1653. |
11. | Neumann S, Woolf CJ. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron, 1999, 23(1): 83-91. |
12. | Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem, 2012, 81: 145-166. |
13. | Zhou S, Ding F, Gu X. Non-coding RNAs as emerging regulators of neural injury responses and regeneration. Neurosci Bull, 2016, 32(3): 253-264. |
14. | Yao C, Yu B. Role of long noncoding RNAs and circular RNAs in nerve regeneration. Front Mol Neurosci, 2019, 12: 165. doi: 10.3389/fnmol.2019.00165. |
15. | Peng Z, Liu C, Wu M. New insights into long noncoding RNAs and their roles in glioma. Mol Cancer, 2018, 17(1): 61. doi: 10.1186/s12943-018-0812-2. |
16. | Jarroux J, Morillon A, Pinskaya M. History, discovery, and classification of lncRNAs. Adv Exp Med Biol, 2017, 1008: 1-46. |
17. | Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res, 2017, 77(15): 3965-3981. |
18. | Wu P, Zuo X, Deng H, et al. Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull, 2013, 97: 69-80. |
19. | Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol, 2017, 18(1): 206. doi: 10.1186/s13059-017-1348-2. |
20. | Finnerup NB, Kuner R, Jensen TS. Neuropathic pain: from mechanisms to treatment. Physiol Rev, 2021, 101(1): 259-301. |
21. | Li Z, Li X, Chen X, et al. Emerging roles of long non-coding RNAs in neuropathic pain. Cell Prolif, 2019, 52(1): e12528. doi: 10.1111/cpr.12528. |
22. | Zhao X, Tang Z, Zhang H, et al. A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat Neurosci, 2013, 16(8): 1024-1031. |
23. | Liang L, Gu X, Zhao JY, et al. G9a participates in nerve injury-induced Kcna2 downregulation in primary sensory neurons. Sci Rep, 2016, 6: 37704. doi: 10.1038/srep37704. |
24. | Miao XR, Fan LC, Wu S, et al. DNMT3a contributes to the development and maintenance of bone cancer pain by silencing Kv1.2 expression in spinal cord dorsal horn. Mol Pain, 2017, 13: 1744806917740681. doi: 10.1177/1744806917740681. |
25. | Zhao JY, Liang L, Gu X, et al. DNA methyltransferase DNMT3a contributes to neuropathic pain by repressing Kcna2 in primary afferent neurons. Nat Commun, 2017, 8: 14712. doi: 10.1038/ncomms14712. |
26. | Jin H, Du XJ, Zhao Y, et al. XIST/miR-544 axis induces neuropathic pain by activating STAT3 in a rat model. J Cell Physiol, 2018, 233(8): 5847-5855. doi: 10.1002/jcp.26376. |
27. | Yan XT, Lu JM, Wang Y, et al. XIST accelerates neuropathic pain progression through regulation of miR-150 and ZEB1 in CCI rat models. J Cell Physiol, 2018, 233(8): 6098-6106. |
28. | Wei M, Li L, Zhang Y, et al. LncRNA X inactive specific transcript contributes to neuropathic pain development by sponging miR-154-5p via inducing toll-like receptor 5 in CCI rat models. J Cell Biochem, 2018. doi: 10.1002/jcb.27088. |
29. | Zhao Y, Li S, Xia N, et al. Effects of XIST/miR-137 axis on neuropathic pain by targeting TNFAIP1 in a rat model. J Cell Physiol, 2018, 233(5): 4307-4316. |
30. | Li G, Jiang H, Zheng C, et al. Long noncoding RNA MRAK009713 is a novel regulator of neuropathic pain in rats. Pain, 2017, 158(10): 2042-2052. |
31. | Meng C, Yang X, Liu Y, et al. Decreased expression of lncRNA Malat1 in rat spinal cord contributes to neuropathic pain by increasing neuron excitability after brachial plexus avulsion. J Pain Res, 2019, 12: 1297-1310. |
32. | Peng C, Zhang C, Su Z, et al. DGCR5 attenuates neuropathic pain through sponging miR-330-3p and regulating PDCD4 in CCI rat models. J Cell Physiol, 2019, 234(5): 7292-7300. |
33. | Zhang C, Peng Y, Wang Y, et al. Transcribed ultraconserved noncoding RNA uc. 153 is a new player in neuropathic pain. Pain, 2020, 161(8): 1744-1754. |
34. | Wang L, Zhu K, Yang B, et al. Knockdown of Linc00052 alleviated spinal nerve ligation-triggered neuropathic pain through regulating miR-448 and JAK1. J Cell Physiol, 2020, 235(10): 6528-6535. |
35. | Xia LX, Ke C, Lu JM. NEAT1 contributes to neuropathic pain development through targeting miR-381/HMGB1 axis in CCI rat models. J Cell Physiol, 2018, 233(9): 7103-7111. |
36. | Chen ZL, Liu JY, Wang F, et al. Suppression of MALAT1 ameliorates chronic constriction injury-induced neuropathic pain in rats via modulating miR-206 and ZEB2. J Cell Physiol, 2019. doi: 10.1002/jcp.28213. |
37. | Zhang D, Mou JY, Wang F, et al. CRNDE enhances neuropathic pain via modulating miR-136/IL6R axis in CCI rat models. J Cell Physiol, 2019, 234(12): 22234-22241. |
38. | Moimas S, Novati F, Ronchi G, et al. Effect of vascular endothelial growth factor gene therapy on post-traumatic peripheral nerve regeneration and denervation-related muscle atrophy. Gene Ther, 2013, 20(10): 1014-1021. |
39. | Li Y, Meng X, Li G, et al. Noncoding RNAs in muscle atrophy. Adv Exp Med Biol, 2018, 1088: 249-266. |
40. | Hitachi K, Nakatani M, Funasaki S, et al. Expression levels of long non-coding RNAs change in models of altered muscle activity and muscle mass. Int J Mol Sci, 2020, 21(5): 1628. doi: 10.3390/ijms21051628. |
41. | Caretti G, Schiltz RL, Dilworth FJ, et al. The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell, 2006, 11(4): 547-560. |
42. | Dey BK, Pfeifer K, Dutta A. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev, 2014, 28(5): 491-501. |
43. | Gong C, Li Z, Ramanujan K, et al. A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation. Dev Cell, 2015, 34(2): 181-191. |
44. | Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147(2): 358-369. |
45. | Zhu M, Liu J, Xiao J, et al. Lnc-mg is a long non-coding RNA that promotes myogenesis. Nat Commun, 2017, 8: 14718. doi: 10.1038/ncomms14718. |
46. | Zhang ZK, Li J, Guan D, et al. A newly identified lncRNA MAR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration. J Cachexia Sarcopenia Muscle, 2018, 9(3): 613-626. |
47. | Hitachi K, Nakatani M, Takasaki A, et al. Myogenin promoter-associated lncRNA Myoparr is essential for myogenic differentiation. EMBO Rep, 2019, 20(3): e47468. doi: 10.15252/embr.201847468. |
48. | Moresi V, Williams AH, Meadows E, et al. Myogenin and class Ⅱ HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell, 2010, 143(1): 35-45. |
49. | Hitachi K, Nakatani M, Tsuchida K. Long non-coding RNA myoparr regulates GDF5 expression in denervated mouse skeletal muscle. Noncoding RNA, 2019, 5(2): 33. doi: 10.3390/ncrna5020033. |
50. | Sartori R, Schirwis E, Blaauw B, et al. BMP signaling controls muscle mass. Nat Genet, 2013, 45(11): 1309-1318. |
51. | Wu G, Li X, Li M, et al. Long non-coding RNA MALAT1 promotes the proliferation and migration of Schwann cells by elevating BDNF through sponging miR-129-5p. Exp Cell Res, 2020, 390(1): 111937. doi: 10.1016/j.yexcr.2020.111937. |
52. | Liu X, Yu X, He Y, et al. Long noncoding RNA nuclear enriched abundant transcript 1 promotes the proliferation and migration of Schwann cells by regulating the miR-34a/Satb1 axis. J Cell Physiol, 2019. doi: 10.1002/jcp.28302. |
53. | Yao C, Wang Y, Zhang H, et al. lncRNA TNXA-PS1 modulates schwann cells by functioning as a competing endogenous RNA following nerve injury. J Neurosci, 2018, 38(29): 6574-6585. |
54. | Yao C, Chen Y, Wang J, et al. LncRNA BC088259 promotes Schwann cell migration through Vimentin following peripheral nerve injury. Glia, 2020, 68(3): 670-679. |
55. | Wang H, Wu J, Zhang X, et al. Microarray analysis of the expression profile of lncRNAs reveals the key role of lncRNA BC088327 as an agonist to heregulin-1β-induced cell proliferation in peripheral nerve injury. Int J Mol Med, 2018, 41(6): 3477-3484. |
56. | Martinez-Moreno M, O’Shea TM, Zepecki JP, et al. Regulation of peripheral myelination through transcriptional buffering of Egr2 by an antisense long non-coding RNA. Cell Rep, 2017, 20(8): 1950-1963. |
57. | Pan B, Shi ZJ, Yan JY, et al. Long non-coding RNA NONMMUG014387 promotes Schwann cell proliferation after peripheral nerve injury. Neural Regen Res, 2017, 12(12): 2084-2091. |
58. | Yu B, Zhou S, Hu W, et al. Altered long noncoding RNA expressions in dorsal root ganglion after rat sciatic nerve injury. Neurosci Lett, 2013, 534: 117-122. |
59. | Yao C, Wang J, Zhang H, et al. Long non-coding RNA uc.217 regulates neurite outgrowth in dorsal root ganglion neurons following peripheral nerve injury. Eur J Neurosci, 2015, 42(1): 1718-1725. |
60. | Perry RB, Hezroni H, Goldrich MJ, et al. Regulation of neuroregeneration by long noncoding RNAs. Mol Cell, 2018, 72(3): 553-567. |
61. | Wang D, Chen Y, Liu M, et al. The long noncoding RNA Arrl1 inhibits neurite outgrowth by functioning as a competing endogenous RNA during neuronal regeneration in rats. J Biol Chem, 2020, 295(25): 8374-8386. |
62. | Yu B, Zhou S, Yi S, et al. The regulatory roles of non-coding RNAs in nerve injury and regeneration. Prog Neurobiol, 2015, 134: 122-139. |
63. | Burks SS, Levi DJ, Hayes S, et al. Challenges in sciatic nerve repair: anatomical considerations. J Neurosurg, 2014, 121(1): 210-218. |
64. | Dong R, Liu Y, Yang Y, et al. MSC-derived exosomes-based therapy for peripheral nerve injury: A novel therapeutic strategy. Biomed Res Int, 2019, 2019: 6458237. doi: 10.1155/2019/6458237. |
- 1. Grinsell D, Keating CP. Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int, 2014, 2014: 698256. doi: 10.1155/2014/698256.
- 2. Sun F, He Z. Neuronal intrinsic barriers for axon regeneration in the adult CNS. Curr Opin Neurobiol, 2010, 20(4): 510-518.
- 3. Cobianchi S, Jaramillo J, Luvisetto S, et al. Botulinum neurotoxin A promotes functional recovery after peripheral nerve injury by increasing regeneration of myelinated fibers. Neuroscience, 2017, 359: 82-91.
- 4. Weng J, Zhang P, Yin X, et al. The whole transcriptome involved in denervated muscle atrophy following peripheral nerve injury. Front Mol Neurosci, 2018, 11: 69. doi: 10.3389/fnmol.2018.00069.
- 5. Menorca RM, Fussell TS, Elfar JC. Nerve physiology: mechanisms of injury and recovery. Hand Clin, 2013, 29(3): 317-330.
- 6. Mahar M, Cavalli V. Intrinsic mechanisms of neuronal axon regeneration. Nat Rev Neurosci, 2018, 19(6): 323-337.
- 7. Curtis R, Scherer SS, Somogyi R, et al. Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve. Neuron, 1994, 12(1): 191-204.
- 8. Taga T, Kishimoto T. Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol, 1997, 15: 797-819.
- 9. Schweizer U, Gunnersen J, Karch C, et al. Conditional gene ablation of Stat3 reveals differential signaling requirements for survival of motoneurons during development and after nerve injury in the adult. J Cell Biol, 2002, 156(2): 287-297.
- 10. Qiu J, Cafferty WB, McMahon SB, et al. Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. J Neurosci, 2005, 25(7): 1645-1653.
- 11. Neumann S, Woolf CJ. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron, 1999, 23(1): 83-91.
- 12. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem, 2012, 81: 145-166.
- 13. Zhou S, Ding F, Gu X. Non-coding RNAs as emerging regulators of neural injury responses and regeneration. Neurosci Bull, 2016, 32(3): 253-264.
- 14. Yao C, Yu B. Role of long noncoding RNAs and circular RNAs in nerve regeneration. Front Mol Neurosci, 2019, 12: 165. doi: 10.3389/fnmol.2019.00165.
- 15. Peng Z, Liu C, Wu M. New insights into long noncoding RNAs and their roles in glioma. Mol Cancer, 2018, 17(1): 61. doi: 10.1186/s12943-018-0812-2.
- 16. Jarroux J, Morillon A, Pinskaya M. History, discovery, and classification of lncRNAs. Adv Exp Med Biol, 2017, 1008: 1-46.
- 17. Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res, 2017, 77(15): 3965-3981.
- 18. Wu P, Zuo X, Deng H, et al. Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull, 2013, 97: 69-80.
- 19. Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol, 2017, 18(1): 206. doi: 10.1186/s13059-017-1348-2.
- 20. Finnerup NB, Kuner R, Jensen TS. Neuropathic pain: from mechanisms to treatment. Physiol Rev, 2021, 101(1): 259-301.
- 21. Li Z, Li X, Chen X, et al. Emerging roles of long non-coding RNAs in neuropathic pain. Cell Prolif, 2019, 52(1): e12528. doi: 10.1111/cpr.12528.
- 22. Zhao X, Tang Z, Zhang H, et al. A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat Neurosci, 2013, 16(8): 1024-1031.
- 23. Liang L, Gu X, Zhao JY, et al. G9a participates in nerve injury-induced Kcna2 downregulation in primary sensory neurons. Sci Rep, 2016, 6: 37704. doi: 10.1038/srep37704.
- 24. Miao XR, Fan LC, Wu S, et al. DNMT3a contributes to the development and maintenance of bone cancer pain by silencing Kv1.2 expression in spinal cord dorsal horn. Mol Pain, 2017, 13: 1744806917740681. doi: 10.1177/1744806917740681.
- 25. Zhao JY, Liang L, Gu X, et al. DNA methyltransferase DNMT3a contributes to neuropathic pain by repressing Kcna2 in primary afferent neurons. Nat Commun, 2017, 8: 14712. doi: 10.1038/ncomms14712.
- 26. Jin H, Du XJ, Zhao Y, et al. XIST/miR-544 axis induces neuropathic pain by activating STAT3 in a rat model. J Cell Physiol, 2018, 233(8): 5847-5855. doi: 10.1002/jcp.26376.
- 27. Yan XT, Lu JM, Wang Y, et al. XIST accelerates neuropathic pain progression through regulation of miR-150 and ZEB1 in CCI rat models. J Cell Physiol, 2018, 233(8): 6098-6106.
- 28. Wei M, Li L, Zhang Y, et al. LncRNA X inactive specific transcript contributes to neuropathic pain development by sponging miR-154-5p via inducing toll-like receptor 5 in CCI rat models. J Cell Biochem, 2018. doi: 10.1002/jcb.27088.
- 29. Zhao Y, Li S, Xia N, et al. Effects of XIST/miR-137 axis on neuropathic pain by targeting TNFAIP1 in a rat model. J Cell Physiol, 2018, 233(5): 4307-4316.
- 30. Li G, Jiang H, Zheng C, et al. Long noncoding RNA MRAK009713 is a novel regulator of neuropathic pain in rats. Pain, 2017, 158(10): 2042-2052.
- 31. Meng C, Yang X, Liu Y, et al. Decreased expression of lncRNA Malat1 in rat spinal cord contributes to neuropathic pain by increasing neuron excitability after brachial plexus avulsion. J Pain Res, 2019, 12: 1297-1310.
- 32. Peng C, Zhang C, Su Z, et al. DGCR5 attenuates neuropathic pain through sponging miR-330-3p and regulating PDCD4 in CCI rat models. J Cell Physiol, 2019, 234(5): 7292-7300.
- 33. Zhang C, Peng Y, Wang Y, et al. Transcribed ultraconserved noncoding RNA uc. 153 is a new player in neuropathic pain. Pain, 2020, 161(8): 1744-1754.
- 34. Wang L, Zhu K, Yang B, et al. Knockdown of Linc00052 alleviated spinal nerve ligation-triggered neuropathic pain through regulating miR-448 and JAK1. J Cell Physiol, 2020, 235(10): 6528-6535.
- 35. Xia LX, Ke C, Lu JM. NEAT1 contributes to neuropathic pain development through targeting miR-381/HMGB1 axis in CCI rat models. J Cell Physiol, 2018, 233(9): 7103-7111.
- 36. Chen ZL, Liu JY, Wang F, et al. Suppression of MALAT1 ameliorates chronic constriction injury-induced neuropathic pain in rats via modulating miR-206 and ZEB2. J Cell Physiol, 2019. doi: 10.1002/jcp.28213.
- 37. Zhang D, Mou JY, Wang F, et al. CRNDE enhances neuropathic pain via modulating miR-136/IL6R axis in CCI rat models. J Cell Physiol, 2019, 234(12): 22234-22241.
- 38. Moimas S, Novati F, Ronchi G, et al. Effect of vascular endothelial growth factor gene therapy on post-traumatic peripheral nerve regeneration and denervation-related muscle atrophy. Gene Ther, 2013, 20(10): 1014-1021.
- 39. Li Y, Meng X, Li G, et al. Noncoding RNAs in muscle atrophy. Adv Exp Med Biol, 2018, 1088: 249-266.
- 40. Hitachi K, Nakatani M, Funasaki S, et al. Expression levels of long non-coding RNAs change in models of altered muscle activity and muscle mass. Int J Mol Sci, 2020, 21(5): 1628. doi: 10.3390/ijms21051628.
- 41. Caretti G, Schiltz RL, Dilworth FJ, et al. The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell, 2006, 11(4): 547-560.
- 42. Dey BK, Pfeifer K, Dutta A. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev, 2014, 28(5): 491-501.
- 43. Gong C, Li Z, Ramanujan K, et al. A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation. Dev Cell, 2015, 34(2): 181-191.
- 44. Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147(2): 358-369.
- 45. Zhu M, Liu J, Xiao J, et al. Lnc-mg is a long non-coding RNA that promotes myogenesis. Nat Commun, 2017, 8: 14718. doi: 10.1038/ncomms14718.
- 46. Zhang ZK, Li J, Guan D, et al. A newly identified lncRNA MAR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration. J Cachexia Sarcopenia Muscle, 2018, 9(3): 613-626.
- 47. Hitachi K, Nakatani M, Takasaki A, et al. Myogenin promoter-associated lncRNA Myoparr is essential for myogenic differentiation. EMBO Rep, 2019, 20(3): e47468. doi: 10.15252/embr.201847468.
- 48. Moresi V, Williams AH, Meadows E, et al. Myogenin and class Ⅱ HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell, 2010, 143(1): 35-45.
- 49. Hitachi K, Nakatani M, Tsuchida K. Long non-coding RNA myoparr regulates GDF5 expression in denervated mouse skeletal muscle. Noncoding RNA, 2019, 5(2): 33. doi: 10.3390/ncrna5020033.
- 50. Sartori R, Schirwis E, Blaauw B, et al. BMP signaling controls muscle mass. Nat Genet, 2013, 45(11): 1309-1318.
- 51. Wu G, Li X, Li M, et al. Long non-coding RNA MALAT1 promotes the proliferation and migration of Schwann cells by elevating BDNF through sponging miR-129-5p. Exp Cell Res, 2020, 390(1): 111937. doi: 10.1016/j.yexcr.2020.111937.
- 52. Liu X, Yu X, He Y, et al. Long noncoding RNA nuclear enriched abundant transcript 1 promotes the proliferation and migration of Schwann cells by regulating the miR-34a/Satb1 axis. J Cell Physiol, 2019. doi: 10.1002/jcp.28302.
- 53. Yao C, Wang Y, Zhang H, et al. lncRNA TNXA-PS1 modulates schwann cells by functioning as a competing endogenous RNA following nerve injury. J Neurosci, 2018, 38(29): 6574-6585.
- 54. Yao C, Chen Y, Wang J, et al. LncRNA BC088259 promotes Schwann cell migration through Vimentin following peripheral nerve injury. Glia, 2020, 68(3): 670-679.
- 55. Wang H, Wu J, Zhang X, et al. Microarray analysis of the expression profile of lncRNAs reveals the key role of lncRNA BC088327 as an agonist to heregulin-1β-induced cell proliferation in peripheral nerve injury. Int J Mol Med, 2018, 41(6): 3477-3484.
- 56. Martinez-Moreno M, O’Shea TM, Zepecki JP, et al. Regulation of peripheral myelination through transcriptional buffering of Egr2 by an antisense long non-coding RNA. Cell Rep, 2017, 20(8): 1950-1963.
- 57. Pan B, Shi ZJ, Yan JY, et al. Long non-coding RNA NONMMUG014387 promotes Schwann cell proliferation after peripheral nerve injury. Neural Regen Res, 2017, 12(12): 2084-2091.
- 58. Yu B, Zhou S, Hu W, et al. Altered long noncoding RNA expressions in dorsal root ganglion after rat sciatic nerve injury. Neurosci Lett, 2013, 534: 117-122.
- 59. Yao C, Wang J, Zhang H, et al. Long non-coding RNA uc.217 regulates neurite outgrowth in dorsal root ganglion neurons following peripheral nerve injury. Eur J Neurosci, 2015, 42(1): 1718-1725.
- 60. Perry RB, Hezroni H, Goldrich MJ, et al. Regulation of neuroregeneration by long noncoding RNAs. Mol Cell, 2018, 72(3): 553-567.
- 61. Wang D, Chen Y, Liu M, et al. The long noncoding RNA Arrl1 inhibits neurite outgrowth by functioning as a competing endogenous RNA during neuronal regeneration in rats. J Biol Chem, 2020, 295(25): 8374-8386.
- 62. Yu B, Zhou S, Yi S, et al. The regulatory roles of non-coding RNAs in nerve injury and regeneration. Prog Neurobiol, 2015, 134: 122-139.
- 63. Burks SS, Levi DJ, Hayes S, et al. Challenges in sciatic nerve repair: anatomical considerations. J Neurosurg, 2014, 121(1): 210-218.
- 64. Dong R, Liu Y, Yang Y, et al. MSC-derived exosomes-based therapy for peripheral nerve injury: A novel therapeutic strategy. Biomed Res Int, 2019, 2019: 6458237. doi: 10.1155/2019/6458237.