1. |
Osborne NR, Anastakis DJ, Davis KD. Peripheral nerve injuries, pain, and neuroplasticity. J Hand Ther, 2018, 31(2): 184-194.
|
2. |
Beris A, Gkiatas I, Gelalis I, et al. Current concepts in peripheral nerve surgery. Eur J Orthop Surg Traumatol, 2019, 29(2): 263-269.
|
3. |
Kubiak CA, Grochmal J, Kung TA, et al. Stem-cell-based therapies to enhance peripheral nerve regeneration. Muscle Nerve, 2020, 61(4): 449-459.
|
4. |
Tsai MS, Lee JL, Chang YJ, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod, 2004, 19(6): 1450-1456.
|
5. |
Chen ZX, Lu HB, Jin XL, et al. Skeletal muscle-derived cells repair peripheral nerve defects in mice. Neural Regen Res, 2020, 15(1): 152-161.
|
6. |
Sullivan R, Dailey T, Duncan K, et al. Peripheral nerve injury: Stem cell therapy and peripheral nerve transfer. Int J Mol Sci, 2016, 17(12): 2101. doi: 10.3390/ijms17122101.
|
7. |
Boerboom A, Dion V, Chariot A, et al. Molecular mechanisms involved in Schwann cell plasticity. Front Mol Neurosci, 2017, 10: 38. doi: 10.3389/fnmol.2017.00038.
|
8. |
Joannides A, Gaughwin P, Schwiening C, et al. Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet, 2004, 364(9429): 172-178.
|
9. |
Brosius Lutz A, Chung WS, Sloan SA, et al. Schwann cells use TAM receptor-mediated phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury. Proc Natl Acad Sci U S A, 2017, 114(38): E8072-E8080.
|
10. |
Stratton JA, Holmes A, Rosin NL, et al. Macrophages regulate Schwann cell maturation after nerve injury. Cell Rep, 2018, 24(10): 2561-2572.
|
11. |
Menorca RM, Fussell TS, Elfar JC. Nerve physiology: mechanisms of injury and recovery. Hand Clin, 2013, 29(3): 317-330.
|
12. |
Jessen KR, Arthur-Farraj P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia, 2019, 67(3): 421-437.
|
13. |
Askari N, Yaghoobi MM, Shamsara M, et al. Tetracycline-regulated expression of OLIG2 gene in human dental pulp stem cells lead to mouse sciatic nerve regeneration upon transplantation. Neuroscience, 2015, 305: 197-208.
|
14. |
Hyung S, Im SK, Lee BY, et al. Dedifferentiated Schwann cells secrete progranulin that enhances the survival and axon growth of motor neurons. Glia, 2019, 67(2): 360-375.
|
15. |
Han GH, Peng J, Liu P, et al. Therapeutic strategies for peripheral nerve injury: decellularized nerve conduits and Schwann cell transplantation. Neural Regen Res, 2019, 14(8): 1343-1351.
|
16. |
Sakai K, Yamamoto A, Matsubara K, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest, 2012, 122(1): 80-90.
|
17. |
Yi S, Zhang Y, Gu X, et al. Application of stem cells in peripheral nerve regeneration. Burns Trauma, 2020, 8: tkaa002. doi: 10.1093/burnst/tkaa002.
|
18. |
Gomarasca M, Banfi G, Lombardi G. Myokines: The endocrine coupling of skeletal muscle and bone. Adv Clin Chem, 2020, 94: 155-218.
|
19. |
Giudice J, Taylor JM. Muscle as a paracrine and endocrine organ. Curr Opin Pharmacol, 2017, 34: 49-55.
|
20. |
Chen B, Wang B, Zhang WJ, et al. In vivo tendon engineering with skeletal muscle derived cells in a mouse model. Biomaterials, 2012, 33(26): 6086-6097.
|
21. |
Newbern J, Birchmeier C. Nrg1/ErbB signaling networks in Schwann cell development and myelination. Semin Cell Dev Biol, 2010, 21(9): 922-928.
|
22. |
Vartanian T, Goodearl A, Lefebvre S, et al. Neuregulin induces the rapid association of focal adhesion kinase with the erbB2-erbB3 receptor complex in schwann cells. Biochem Biophys Res Commun, 2000, 271(2): 414-417.
|
23. |
Nicolino S, Panetto A, Raimondo S, et al. Denervation and reinnervation of adult skeletal muscle modulate mRNA expression of neuregulin-1 and ErbB receptors. Microsurgery, 2009, 29(6): 464-472.
|
24. |
Musavi L, Brandacher G, Hoke A, et al. Muscle-derived stem cells: important players in peripheral nerve repair. Expert Opin Ther Targets, 2018, 22(12): 1009-1016.
|
25. |
Tamaki T. Therapeutic capacities of human and mouse skeletal muscle-derived stem cells for a long gap peripheral nerve injury. Neural Regen Res, 2017, 12(11): 1811-1813.
|
26. |
Wang Y, Li D, Wang G, et al. The effect of co-transplantation of nerve fibroblasts and Schwann cells on peripheral nerve repair. Int J Biol Sci, 2017, 13(12): 1507-1519.
|
27. |
Tassi E, Al-Attar A, Aigner A, et al. Enhancement of fibroblast growth factor (FGF) activity by an FGF-binding protein. J Biol Chem, 2001, 276(43): 40247-40253.
|