1. |
Fan J, Bi L, Jin D, et al. Microsurgical techniques used to construct the vascularized and neurotized tissue engineered bone. Biomed Res Int, 2014, 2014: 281872. doi: 10.1155/2014/281872.
|
2. |
Fan JJ, Mu TW, Qin JJ, et al. Different effects of implanting sensory nerve or blood vessel on the vascularization, neurotization, and osteogenesis of tissue-engineered bone in vivo. Biomed Res Int, 2014, 2014: 412570. doi: 10.1155/2014/412570.
|
3. |
Valtanen RS, Yang YP, Gurtner GC, et al. Synthetic and bone tissue engineering graft substitutes: What is the future? Injury, 2021, 52 Suppl 2: S72-S77.
|
4. |
Brady RD, Grills BL, Church JE, et al. Closed head experimental traumatic brain injury increases size and bone volume of callus in mice with concomitant tibial fracture. Sci Rep, 2016, 6: 34491. doi: 10.1038/srep34491.
|
5. |
Mollahosseini M, Ahmadirad H, Goujani R, et al. The association between traumatic brain injury and accelerated fracture healing: A study on the effects of growth factors and cytokines. J Mol Neurosci, 2021, 71(1): 162-168.
|
6. |
Florencio-Silva R, Sasso GR, Sasso-Cerri E, et al. Biology of bone tissue: Structure, function, and factors that influence bone cells. Biomed Res Int, 2015, 2015: 421746. doi: 10.1155/2015/421746.
|
7. |
Ascenzi MG. Theoretical mathematics, polarized light microscopy and computational models in healthy and pathological bone. Bone, 2020, 134: 115295. doi: 10.1016/j.bone.2020.115295.
|
8. |
Huang S, Li Z, Liu Y, et al. Neural regulation of bone remodeling: Identifying novel neural molecules and pathways between brain and bone. J Cell Physiol, 2019, 234(5): 5466-5477.
|
9. |
Wang X, Xu J, Kang Q. Neuromodulation of bone: Role of different peptides and their interactions (Review). Mol Med Rep, 2021, 23(1): 32. doi: 10.3892/mmr.2020.11670.
|
10. |
王坤靓, 秦本刚. 周围神经错配再生的研究进展. 中国修复重建外科杂志, 2021, 35(3): 387-391.
|
11. |
Monje PV. Schwann cell cultures: Biology, technology and therapeutics. Cells, 2020, 9(8): 1848. doi: 10.3390/cells9081848.
|
12. |
Cai XX, Luo E, Yuan Q. Interaction between Schwann cells and osteoblasts in vitro. Int J Oral Sci, 2010, 2(2): 74-81.
|
13. |
Itoyama T, Yoshida S, Tomokiyo A, et al. Possible function of GDNF and Schwann cells in wound healing of periodontal tissue. J Periodontal Res, 2020, 55(6): 830-839.
|
14. |
Jones RE, Salhotra A, Robertson KS, et al. Skeletal stem cell-Schwann cell circuitry in mandibular repair. Cell Rep, 2019, 28(11): 2757-2766.
|
15. |
Wu Z, Pu P, Su Z, et al. Schwann cell-derived exosomes promote bone regeneration and repair by enhancing the biological activity of porous Ti6Al4V scaffolds. Biochem Biophys Res Commun, 2020, 531(4): 559-565.
|
16. |
Wang D, Lyu Y, Yang Y, et al. Schwann cell-derived EVs facilitate dental pulp regeneration through endogenous stem cell recruitment via SDF-1/CXCR4 axis. Acta Biomater, 2021. doi: 10.1016/j.actbio.2021.11.039.
|
17. |
Johnston AP, Yuzwa SA, Carr MJ, et al. Dedifferentiated Schwann cell precursors secreting paracrine factors are required for regeneration of the mammalian digit tip. Cell Stem Cell, 2016, 19(4): 433-448.
|
18. |
Parfejevs V, Debbache J, Shakhova O, et al. Injury-activated glial cells promote wound healing of the adult skin in mice. Nat Commun, 2018, 9(1): 236. doi: 10.1038/s41467-017-01488-2.
|
19. |
Zhang X, Jiang X, Jiang S, et al. Schwann cells promote prevascularization and osteogenesis of tissue-engineered bone via bone marrow mesenchymal stem cell-derived endothelial cells. Stem Cell Res Ther, 2021, 12(1): 382. doi: 10.1186/s13287-021-02433-3.
|
20. |
Ramos T, Ahmed M, Wieringa P, et al. Schwann cells promote endothelial cell migration. Cell Adh Migr, 2015, 9(6): 441-451.
|
21. |
Wang Y, Zhang G, Hou Y, et al. Transplantation of microencapsulated Schwann cells and mesenchymal stem cells augment angiogenesis and improve heart function. Mol Cell Biochem, 2012, 366(1-2): 139-147.
|
22. |
Kilian O, Hartmann S, Dongowski N, et al. BDNF and its TrkB receptor in human fracture healing. Ann Anat, 2014, 196(5): 286-295.
|
23. |
Liu Q, Lei L, Yu T, et al. Effect of brain-derived neurotrophic factor on the neurogenesis and osteogenesis in bone engineering. Tissue Eng Part A, 2018, 24(15-16): 1283-1292.
|
24. |
Zhang Z, Zhang Y, Zhou Z, et al. BDNF regulates the expression and secretion of VEGF from osteoblasts via the TrkB/ERK1/2 signaling pathway during fracture healing. Mol Med Rep, 2017, 15(3): 1362-1367.
|
25. |
Su YW, Chung R, Ruan CS, et al. Neurotrophin-3 induces BMP-2 and VEGF activities and promotes the bony repair of injured growth plate cartilage and bone in rats. J Bone Miner Res, 2016, 31(6): 1258-1274.
|
26. |
Zhang Z, Hu P, Wang Z, et al. BDNF promoted osteoblast migration and fracture healing by up-regulating integrin β1 via TrkB-mediated ERK1/2 and AKT signalling. J Cell Mol Med, 2020, 24(18): 10792-10802.
|
27. |
Wang L, Zhou S, Liu B, et al. Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis. J Orthop Res, 2006, 24(12): 2238-2245.
|
28. |
Kajiya M, Shiba H, Fujita T, et al. Brain-derived neurotrophic factor stimulates bone/cementum-related protein gene expression in cementoblasts. J Biol Chem, 2008, 283(23): 16259-16267.
|
29. |
Lee RH, Wong WL, Chan CH, et al. Differential effects of glial cell line-derived neurotrophic factor and neurturin in RET/GFRalpha1-expressing cells. J Neurosci Res, 2006, 83(1): 80-90.
|
30. |
Sun CY, Chu ZB, She XM, et al. Brain-derived neurotrophic factor is a potential osteoclast stimulating factor in multiple myeloma. Int J Cancer, 2012, 130(4): 827-836.
|
31. |
Ai LS, Sun CY, Zhang L, et al. Inhibition of BDNF in multiple myeloma blocks osteoclastogenesis via down-regulated stroma-derived RANKL expression both in vitro and in vivo. PLoS One, 2012, 7(10): e46287. doi: 10.1371/journal.pone.0046287.
|
32. |
Shen L, Zeng W, Wu YX, et al. Neurotrophin-3 accelerates wound healing in diabetic mice by promoting a paracrine response in mesenchymal stem cells. Cell Transplant, 2013, 22(6): 1011-1021.
|
33. |
Li X, Sun DC, Li Y, et al. Neurotrophin-3 improves fracture healing in rats. Eur Rev Med Pharmacol Sci, 2018, 22(8): 2439-2446.
|
34. |
Su YW, Chim SM, Zhou L, et al. Osteoblast derived-neurotrophin-3 induces cartilage removal proteases and osteoclast-mediated function at injured growth plate in rats. Bone, 2018, 116: 232-247.
|
35. |
Grills BL, Schuijers JA, Ward AR. Topical application of nerve growth factor improves fracture healing in rats. J Orthop Res, 1997, 15(2): 235-242.
|
36. |
Rahbek UL, Dissing S, Thomassen C, et al. Nerve growth factor activates aorta endothelial cells causing PI3K/Akt- and ERK-dependent migration. Pflugers Arch, 2005, 450(5): 355-361.
|
37. |
Hemingway F, Taylor R, Knowles HJ, et al. RANKL-independent human osteoclast formation with APRIL, BAFF, NGF, IGF Ⅰ and IGF Ⅱ. Bone, 2011, 48(4): 938-944.
|
38. |
Yi S, Kim J, Lee SY. GDNF secreted by pre-osteoclasts induces migration of bone marrow mesenchymal stem cells and stimulates osteogenesis. BMB Rep, 2020, 53(12): 646-651.
|
39. |
Wang H, Su K, Su L, et al. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109908. doi: 10.1016/j.msec.2019.109908.
|
40. |
Cipriano J, Lakshmikanthan A, Buckley C, et al. Characterization of a prevascularized biomimetic tissue engineered scaffold for bone regeneration. J Biomed Mater Res B Appl Biomater, 2020, 108(4): 1655-1668.
|
41. |
Vidal L, Brennan MÁ, Krissian S, et al. In situ production of pre-vascularized synthetic bone grafts for regenerating critical-sized defects in rabbits. Acta Biomater, 2020, 114: 384-394.
|
42. |
Yuan Q, Gong P, Tan Z. Schwann cell graft: a method to promote sensory responses of osseointegrated implants. Med Hypotheses, 2007, 69(4): 800-803.
|
43. |
Hade MD, Suire CN, Suo Z. Mesenchymal stem cell-derived exosomes: Applications in regenerative medicine. Cells, 2021, 10(8): 1959. doi: 10.3390/cells10081959.
|