1. |
Reid PC, Morr S, Kaiser MG. State of the union: a review of lumbar fusion indications and techniques for degenerative spine disease. J Neurosurg Spine, 2019, 31(1): 1-14.
|
2. |
Kim YH, Ha KY, Rhyu KW, et al. Lumbar interbody fusion: Techniques, pearls and pitfalls. Asian Spine J, 2020, 14(5): 730-741.
|
3. |
孟海, 杨雍, 孙天胜, 等. 腰椎后路手术椎间融合器应用的专家共识. 中国脊柱脊髓杂志, 2021, 31(4): 379-384.
|
4. |
Liu JM, Xiong X, Peng AF, et al. A comparison of local bone graft with PEEK cage versus iliac bone graft used in anterior cervical discectomy and fusion. Clin Neurol Neurosurg, 2017, 155: 30-35.
|
5. |
Makino T, Takenaka S, Sakai Y, et al. Comparison of short-term radiographical and clinical outcomes after posterior lumbar interbody fusion with a 3D porous titanium alloy cage and a titanium-coated PEEK cage. Global Spine J, 2022, 12(5): 931-939.
|
6. |
Schnake KJ, Fleiter N, Hoffmann C, et al. PLIF surgery with titanium-coated PEEK or uncoated PEEK cages: a prospective randomised clinical and radiological study. Eur Spine J, 2021, 30(1): 114-121.
|
7. |
Li S, Huan Y, Zhu B, et al. Research progress on the biological modifications of implant materials in 3D printed intervertebral fusion cages. J Mater Sci Mater Med, 2021, 33(1): 2. doi: 10.1007/s10856-021-06609-4.
|
8. |
Zippelius T, Strube P, Suleymanov F, et al. Safety and efficacy of an electron beam melting technique-manufactured titanium mesh cage for lumbar interbody fusion. Orthopade, 2019, 48(2): 150-156.
|
9. |
王志强, 冯皓宇, 马迅, 等. 3D打印人工椎体及椎间融合器在颈椎前路手术中应用的临床效果. 中国修复重建外科杂志, 2021, 35(9): 1147-1154.
|
10. |
Mayer F, Heider F, Haasters F, et al. Radiological and clinical outcomes after anterior cervical discectomy and fusion (ACDF) with an innovative 3D printed cellular titanium cage filled with vertebral bone marrow. Biomed Res Int, 2022, 2022: 6339910. doi: 10.1155/2022/6339910. eCollection 2022.
|
11. |
Warburton A, Girdler SJ, Mikhail CM, et al. Biomaterials in spinal implants: A review. Neurospine, 2020, 17(1): 101-110.
|
12. |
Pan CT, Lin CH, Huang YK, et al. Design of customize interbody fusion cages of Ti64ELI with gradient porosity by selective laser melting process. Micromachines (Basel), 2021, 12(3): 307. doi: 10.3390/mi12030307.
|
13. |
任捷, 吕智. 3D打印个性化腰椎融合器设计及生物力学性能研究分析. 中国骨伤, 2021, 34(8): 764-769.
|
14. |
Fogel G, Martin N, Lynch K, et al. Subsidence and fusion performance of a 3D-printed porous interbody cage with stress-optimized body lattice and microporous endplates—a comprehensive mechanical and biological analysis. Spine J, 2022, 22(6): 1028-1037.
|
15. |
Zhang Z, Li H, Fogel GR, et al. Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages. Comput Biol Med, 2018, 95: 167-174.
|
16. |
赵春伶, 贾少薇, 李剑, 等. 基于3D打印多孔支架和植入体的结构设计研究进展. 医用生物力学, 2019, 34(4): 446-452.
|
17. |
Tamayo JA, Riascos M, Vargas CA, et al. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Heliyon, 2021, 7(5): e06892. doi: 10.1016/j.heliyon.2021.e06892.
|
18. |
da Costa Valente ML, de Oliveira TT, Kreve S, et al. Analysis of the mechanical and physicochemical properties of Ti-6Al-4V discs obtained by selective laser melting and subtractive manufacturing method. J Biomed Mater Res B Appl Biomater, 2021, 109(3): 420-427.
|
19. |
Adl Amini D, Okano I, Oezel L, et al. Evaluation of cage subsidence in standalone lateral lumbar interbody fusion: novel 3D-printed titanium versus polyetheretherketone (PEEK) cage. Eur Spine J, 2021, 30(8): 2377-2384.
|
20. |
Landham PR, Don AS, Robertson PA. Do position and size matter? An analysis of cage and placement variables for optimum lordosis in PLIF reconstruction. Eur Spine J, 2017, 26(11): 2843-2850.
|
21. |
Amorim-Barbosa T, Pereira C, Catelas D, et al. Risk factors for cage subsidence and clinical outcomes after transforaminal and posterior lumbar interbody fusion. Eur J Orthop Surg Traumatol, 2021. doi: 10.1007/s00590-021-03103-z.
|
22. |
赵龙, 曾建成, 谢天航, 等. 腰椎椎间融合术后椎间融合器沉降的研究进展. 中国修复重建外科杂志, 2021, 35(8): 1063-1067.
|
23. |
戚金来. 可控3D多孔结构椎间融合器设计及制备关键技术研究. 杭州: 杭州电子科技大学, 2022.
|
24. |
Adl Amini D, Moser M, Oezel L, et al. Early outcomes of three-dimensional-printed porous titanium versus polyetheretherketone cage implantation for stand-alone lateral lumbar interbody fusion in the treatment of symptomatic adjacent segment degeneration. World Neurosurg, 2022, 162: e14-e20.
|
25. |
Wu H, Shan Z, Zhao F, et al. Poor bone quality, multilevel surgery, and narrow and tall cages are associated with intraoperative endplate injuries and late-onset cage subsidence in lateral lumbar interbody fusion: A systematic review. Clin Orthop Relat Res, 2022, 480(1): 163-188.
|
26. |
毛誉蓉, 孙佳敏, 周雄, 等. 医用特种高分子聚醚醚酮植入体及其表面界面工程. 功能高分子学报, 2021, 34(2): 144-160.
|
27. |
Hou Y, Yan Z, Wu Z. Concise review; The recent methods that enhance the osteogenic differentiation of human induced pluripotent stem cells. Curr Stem Cell Res Ther, 2021, 16(8): 949-957.
|
28. |
Rapuano BE, Lee JJ, MacDonald DE. Titanium alloy surface oxide modulates the conformation of adsorbed fibronectin to enhance its binding to α(5)β(1) integrins in osteoblasts. Eur J Oral Sci, 2012, 120(3): 185-194.
|