1. |
刘博, 谷元, 王鹏, 等. 椎体后凸成形术治疗580例老年性骨质疏松性椎体压缩性骨折疗效的影响因素分析. 中国骨质疏松杂志, 2019, 25(10): 1469-1473.
|
2. |
Wang B, Zhao CP, Song LX, et al. Balloon kyphoplasty versus percutaneous vertebroplasty for osteoporotic vertebral compression fracture: a meta-analysis and systematic review. J Orthop Surg Res, 2018, 13(1): 264. doi: 10.3389/fcell.2020.00694.
|
3. |
Patel N, Jacobs D, John J, et al. Balloon kyphoplasty vs vertebroplasty: a systematic review of height restoration in osteoporotic vertebral compression fractures. J Pain Res, 2022, 15: 1233-1245.
|
4. |
Khairallah A. Descemet stripping automated endothelialkeratoplasty (DSAEK) versus repeat penetrating keratoplasty (PKP) to manage eyes with failed corneal graft. Ann Saudi Med, 2018, 38(1): 36-41.
|
5. |
Wang B, Cao J, Chang J, et al. Effectiveness of Tirobot-assisted vertebroplasty in treating thoracolumbar osteoporotic compression fracture. J Orthop Surg Res, 2021, 16(1): 65. doi: 10.1186/s13018-021-02211-0.
|
6. |
林书, 胡豇, 万仑, 等. 机器人辅助经皮椎体后凸成形术治疗多节段骨质疏松性椎体压缩性骨折. 中国修复重建外科杂志, 2020, 34(9): 1136-1141.
|
7. |
袁伟, 孟小童, 刘欣春, 等. 机器人辅助经皮椎体后凸成形术治疗单/双节段骨质疏松性椎体压缩骨折临床疗效. 中国修复重建外科杂志, 2021, 35(8): 1000-1006.
|
8. |
Genant HK, Wu CY, van Kuijk C, et al. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res, 1993, 8(9): 1137-1148.
|
9. |
Gertzbein SD, Robbins SE. Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976), 1990, 15(1): 11-14.
|
10. |
Huang M, Tetreault TA, Vaishnav A, et al. The current state of navigation in robotic spine surgery. Ann Transl Med, 2021, 9(1): 86. doi: 10.21037/atm-2020-ioi-07.
|
11. |
郑筱亭, 王滨城, 吕碧涛, 等. 经皮椎体成形术治疗骨质疏松性椎体压缩性骨折术中采用椎旁神经阻滞的镇痛效果. 脊柱外科杂志, 2021, 19(6): 377-381.
|
12. |
陈亦豪, 徐仲煌, 张娇, 等. 经皮椎体强化联合局部神经阻滞治疗椎体压缩骨折远处疼痛的效果. 中华骨质疏松和骨矿盐疾病杂志, 2019, 12(3): 233-239.
|
13. |
Alsalmi S, Capel C, Chenin L, et al. Robot-assisted intravertebral augmentation corrects local kyphosis more effectively than a conventional fluoroscopy-guided technique. J Neurosurg Spine, 2018, 30(2): 289-295.
|
14. |
郭松, 付强, 杭栋华, 等. Mazor脊柱机器人辅助改良经皮椎体成形术治疗腰椎骨质疏松性骨折的疗效分析. 中国脊柱脊髓杂志, 2021, 31(9): 818-824.
|
15. |
郑博隆, 郝定均, 林斌, 等. “天玑” 骨科手术机器人辅助与徒手穿刺椎体成形术治疗上胸椎骨质疏松性椎体压缩骨折的疗效比较. 中华创伤骨科杂志, 2021, 23(1): 20-26.
|
16. |
王智强, 林路, 陈萧霖, 等. 经皮椎体强化治疗骨质疏松性椎体压缩性骨折: 导航定位、骨折复位系统、骨水泥渗漏及材料的改良. 中国组织工程研究, 2022, 26(4): 631-636.
|
17. |
Klingler JH, Sircar R, Deininger MH, et al. Vesselplasty: a new minimally invasive approach to treat pathological vertebral fractures in selected tumor patients-preliminary results. Rofo, 2013, 185(4): 340-350.
|
18. |
唐海, 贾璞, 陈浩, 等. 新型Vessel-X经皮椎体强化系统在脊柱微创治疗的临床应用. 中华医学杂志, 2017, 97(33): 2567-2572.
|
19. |
李凯明, 王尚全, 李玲慧, 等. 囊袋技术与经皮穿刺椎体后凸成形治疗胸腰椎骨质疏松性压缩骨折: 评价改善伤椎术后cobb角及减少骨水泥渗漏的Meta分析. 中国组织工程研究, 2020, 24(4): 650-656.
|
20. |
钟远鸣, 万通, 吴卓檀, 等. 骨质疏松胸腰椎骨折三种椎体增强术网状荟萃分析. 中国矫形外科杂志, 2021, 29(4): 325-329.
|
21. |
杨柳, 杜建伟. 椎体增强术中降低骨水泥渗漏率的措施. 中国组织工程研究, 2022, 26(22): 3598-3601.
|
22. |
郑博隆, 郝定均, 闫亮, 等. 自行研发的可弯曲椎体成形器在椎体成形术治疗骨质疏松性胸椎压缩骨折中的应用. 中华创伤骨科杂志, 2019, 21(10): 881-887.
|
23. |
李凡杰, 杜怡斌, 刘艺明, 等. 椎体成形与弯角椎体成形治疗骨质疏松性椎体压缩骨折: 骨水泥注射后分布与渗漏率的比较. 中国组织工程研究, 2020, 24(10): 1484-1490.
|
24. |
Yuan W, Cao W, Meng X, et al. Learning curve of robot-assisted percutaneous kyphoplasty for osteoporotic vertebral compression fractures. World Neurosurg, 2020, 138: e323-e329.
|
25. |
王翔宇, 谭伦, 林旭, 等. 光电导航引导单侧穿刺椎体后凸成形术治疗胸腰椎骨质疏松性椎体压缩骨折. 中国修复重建外科杂志, 2018, 32(2): 203-209.
|
26. |
Cui GY, Han XG, Wei Y, et al. Robot-assisted minimally invasive transforaminal lumbar interbody fusion in the treatment of lumbar spondylolisthesis. Orthop Surg, 2021, 13(7): 1960-1968.
|
27. |
Zhang Q, Xu YF, Tian W, et al. Comparison of superior-level facet joint violations between robot-assisted percutaneous pedicle screw placement and conventional open fluoroscopic-guided pedicle screw placement. Orthop Surg, 2019, 11(5): 850-856.
|
28. |
林书, 胡豇, 万仑, 等. 机器人与透视辅助经皮椎弓根螺钉置入的比较. 中国矫形外科杂志, 2020, 28(20): 1830-1834.
|
29. |
袁伟, 孟小童, 刘欣春, 等. 骨科机器人辅助椎体后凸成形术治疗骨质疏松性椎体压缩性骨折的学习曲线. 中华创伤骨科杂志, 2019, 21(8): 670-675.
|
30. |
Malham GM, Wells-Quinn T. What should my hospital buy next?-Guidelines for the acquisition and application of imaging, navigation, and robotics for spine surgery. J Spine Surg, 2019, 5(1): 155-165.
|
31. |
Keric N, Eum DJ, Afghanyar F, et al. Evaluation of surgical strategy of conventional vs. percutaneous robot-assisted spinal trans-pedicular instrumentation in spondylodiscitis. J Robot Surg, 2017, 11(1): 17-25.
|
32. |
Laudato PA, Pierzchala K, Schizas C. Pedicle screw insertion accuracy using o-arm, robotic guidance, or freehand technique: A comparative study. Spine (Phila Pa 1976), 2018, 43(6): E373-E378.
|