1. |
Zalavras CG, Lieberman JR. Osteonecrosis of the femoral head: evaluation and treatment. J Am Acad Orthop Surg, 2014, 22(7): 455-464.
|
2. |
Song Y, Du Z, Ren M, et al. Significant associations of SOX9 gene polymorphism and gene expression with the risk of osteonecrosis of the femoral head in a han population in Northern China. Biomed Res Int, 2016, 2016: 5695317. doi: 10.1155/2016/5695317.
|
3. |
Yoon BH, Mont MA, Koo KH, et al. The 2019 revised version of association research circulation osseous staging system of osteonecrosis of the femoral head. J Arthroplasty, 2020, 35(4): 933-940.
|
4. |
Pountos I, Giannoudis PV. The role of iloprost on bone edema and osteonecrosis: Safety and clinical results. Expert Opin Drug Saf, 2018, 17(3): 225-233.
|
5. |
Miyahara HS, Ranzoni LV, Ejnisman L, et al. Osteonecrosis of the femoral head: Update article. Rev Bras Ortop (Sao Paulo), 2022, 57(3): 351-359.
|
6. |
Lee YJ, Cui Q, Koo KH. Is there a role of pharmacological treatments in the prevention or treatment of osteonecrosis of the femoral head?: A systematic review J Bone Metab, 2019, 26(1): 13-18.
|
7. |
Li S, Liu Y, Zhou G, et al. Pre-collapse femoral head necrosis treated by hip abduction: a computational biomechanical analysis. Health Inf Sci Syst, 2022, 10(1): 8. doi: 10.1007/s13755-022-00175-x.
|
8. |
Zhou H, Liang B, Jiang H, et al. Magnesium based biomaterials as emerging agents for bone repair and regeneration: from mechanism to application. Journal of Magnesium and Alloys, 2021, 9(3): 779-804.
|
9. |
Chen H, Han Q, Wang C, et al. Porous scaffold design for additive manufacturing in orthopedics: A review. Front Bioeng Biotechnol, 2020, 8: 609. doi: 10.3389/fbioe.2020.00609.
|
10. |
Belda R, Megías R, Marco M, et al. Numerical analysis of the influence of triply periodic minimal surface structures morphometry on the mechanical response. Comput Methods Programs Biomed, 2023, 230: 107342. doi: 10.1016/j.cmpb.2023.107342.
|
11. |
孙海波, 徐淑波, 张森, 等. SLM成形不同孔隙结构骨支架的仿真与实验研究. 精密成形工程, 2022, 14(2): 123-128.
|
12. |
Moarrefzadeh A, Morovvati MR, Angili SN, et al. Fabrication and finite element simulation of 3D printed poly L-lactic acid scaffolds coated with alginate/carbon nanotubes for bone engineering applications. Int J Biol Macromol, 2023, 224: 1496-1508.
|
13. |
Xu BW, Lee KW, Li WJ, et al. A comparative study on cylindrical and spherical models in fabrication of bone tissue engineering scaffolds: Finite element simulation and experiments. Materials & Design, 2021, 211: 110150. doi: 10.1016/j.matdes.2021.110150.
|
14. |
Prochor P, Gryko A. Numerical analysis of the influence of porosity and pore geometry on functionality of scaffolds designated for orthopedic regenerative medicine. Materials (Basel), 2020, 14(1): 109. doi: 10.3390/ma14010109.
|
15. |
Deng F, Liu L, Li Z, et al. 3D printed Ti6Al4V bone scaffolds with different pore structure effects on bone ingrowth. J Biol Eng, 2021, 15(1): 4. doi: 10.1186/s13036-021-00255-8.
|
16. |
Vu AA, Burke DA, Bandyopadhyay A, et al. Effects of surface area and topography on 3D printed tricalcium phosphate scaffolds for bone grafting applications. Addit Manuf, 2021, 39: 101870. doi: 10.1016/j.addma.2021.101870.
|
17. |
Chen H, Liu Y, Wang C, et al. Design and properties of biomimetic irregular scaffolds for bone tissue engineering. Comput Biol Med, 2021, 130: 104241. doi: 10.1016/j.compbiomed.2021.104241.
|
18. |
Rodríguez-Montaño ÓL, Cortés-Rodríguez CJ, Naddeo F, et al. Irregular load adapted scaffold optimization: A computational framework based on mechanobiological criteria. ACS Biomater Sci Eng, 2019, 5(10): 5392-5411.
|
19. |
Zhao H, Han Y, Pan C, et al. Design and mechanical properties verification of gradient voronoi scaffold for bone tissue engineering. Micromachines (Basel), 2021, 12(6): 664. doi: 10.3390/mi12060664.
|
20. |
Fallah A, Altunbek M, Bartolo P, et al. 3D printed scaffold design for bone defects with improved mechanical and biological properties. J Mech Behav Biomed Mater, 2022, 134: 105418. doi: 10.1016/j.jmbbm.2022.105418.
|
21. |
Li J, Guo D, Li J, et al. Irregular pore size of degradable bioceramic Voronoi scaffolds prepared by stereolithography: Osteogenesis and computational fluid dynamics analysis. Materials & Design, 2022, 224: 111414. doi: 10.1016/j.matdes.2022.111414.
|
22. |
Wu N, Li S, Zhang B, et al. The advances of topology optimization techniques in orthopedic implants: A review. Med Biol Eng Comput, 2021, 59(9): 1673-1689.
|
23. |
Vilardell AM, Takezawa A, du Plessis A, et al. Topology optimization and characterization of Ti6Al4V ELI cellular lattice structures by laser powder bed fusion for biomedical applications. Materials Science and Engineering: A, 2019, 766: 138330. doi: 10.1016/j. msea. 2019.138330.
|
24. |
Wu C, Fang J, Entezari A, et al. A time-dependent mechanobiology-based topology optimization to enhance bone growth in tissue scaffolds. J Biomech, 2021, 117: 110233. doi: 10.1016/j.jbiomech.2021.110233.
|
25. |
Xiao Z, Yang Y, Xiao R, et al. Evaluation of topology-optimized lattice structures manufactured via selective laser melting. Materials & Design, 2018, 143: 27-37.
|
26. |
Xu Y, Huang G, Li T, et al. Compressive properties of Ti6Al4V functionally graded lattice structures via topology optimization design and selective laser melting fabrication. Materials Science and Engineering: A, 2022, 860: 144265. doi: 10.1016/j.msea.2022.144265.
|
27. |
Zhong M, Zhou W, Xi H, et al. Double-level energy absorption of 3D printed tpms cellular structures via wall thickness gradient design. Materials (Basel), 2021, 14(21): 6262. doi: 10.3390/ma14216262.
|
28. |
Ren F, Zhang C, Liao W, et al. Transition boundaries and stiffness optimal design for multi-TPMS lattices. Materials & Design, 2021, 210: 110062. doi: 10.1016/j.matdes.2021.110062.
|
29. |
Sun Q, Sun J, Guo K, et al. Compressive mechanical properties and energy absorption characteristics of SLM fabricated Ti6Al4V triply periodic minimal surface cellular structures. Mechanics of Materials, 2022, 166: 104241. doi: 10.1016/j.mechmat.2022.104241.
|
30. |
Jia H, Lei H, Wang P, et al. An experimental and numerical investigation of compressive response of designed Schwarz Primitive triply periodic minimal surface with non-uniform shell thickness. Extreme Mechanics Letters, 2020, 37: 100671. doi: 10.1016/j.eml.2020.100671.
|
31. |
Zhang Y, Zhang J, Zhao X, et al. Mechanical behaviors regulation of triply periodic minimal surface structures with crystal twinning. Additive Manufacturing, 2022, 58: 103036. doi: 10.1016/j.addma.2022.103036.
|
32. |
Santos J, Pires T, Gouveia BP, et al. On the permeability of TPMS scaffolds. J Mech Behav Biomed Mater, 2020, 110: 103932.
|
33. |
Ali D, Ozalp M, Blanquer SBG, et al. Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis. European Journal of Mechanics-B/Fluids, 2020, 79: 376-385.
|
34. |
Zhu J, Zou S, Mu Y, et al. Additively manufactured scaffolds with optimized thickness based on triply periodic minimal surface. Materials (Basel), 2022, 15(20): 7084. doi: 10.3390/ma15207084.
|
35. |
Asbai-Ghoudan R, Ruiz de Galarreta S, Rodriguez-Florez N. Analytical model for the prediction of permeability of triply periodic minimal surfaces. J Mech Behav Biomed Mater, 2021, 124: 104804. doi: 10.1016/j.jmbbm.2021.104804.
|
36. |
刘庆波, 苏知杨, 王恒峰, 等. 三周期极小化曲面单元结构骨小梁假体的生物力学性能. 中国组织工程研究, 2022, 26(15): 2297-2301.
|
37. |
Zeng C, Wang W. Modeling method for variable and isotropic permeability design of porous material based on TPMS lattices. Tribology International, 2022, 176: 107913. doi: 10.1016/j.triboint.2022.107913.
|