1. |
Sivan U, De Angelis J, Kusumbe AP. Role of angiocrine signals in bone development, homeostasis and disease. Open Biol, 2019, 9(10): 190144. doi: 10.1098/rsob.190144.
|
2. |
Peng Y, Wu S, Li Y, et al. Type H blood vessels in bone modeling and remodeling. Theranostics, 2020, 10(1): 426-436.
|
3. |
Yang Y, Yujiao W, Fang W, et al. The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol Res, 2020, 53(1): 40. doi: 10.1186/s40659-020-00309-z.
|
4. |
褚美玲, 陈红风, 殷玉莲, 等. H型血管在改善骨丢失中的作用机制研究进展. 中华骨科杂志, 2022, 42(22): 1523-1530.
|
5. |
Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature, 2014, 507(7492): 323-328.
|
6. |
Wang L, Zhou F, Zhang P, et al. Human type H vessels are a sensitive biomarker of bone mass. Cell Death Dis, 2017, 8(5): e2760. doi: 10.1038/cddis.2017.36.
|
7. |
Zhu Y, Ruan Z, Lin Z, et al. The association between CD31hiEmcnhi endothelial cells and bone mineral density in Chinese women. J Bone Miner Metab, 2019, 37(6): 987-995.
|
8. |
Liu Y, Xie HQ, Shen B. Type H vessels-a bridge connecting subchondral bone remodelling and articular cartilage degeneration in osteoarthritis development. Rheumatology (Oxford), 2023, 62(4): 1436-1444.
|
9. |
Chen X, He W, Sun M, et al. STING inhibition accelerates the bone healing process while enhancing type H vessel formation. FASEB J, 2021, 35(11): e21964. doi: 10.1096/fj.202100069RR.
|
10. |
Xie H, Cui Z, Wang L, et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med, 2014, 20(11): 1270-1278.
|
11. |
Xu R, Yallowitz A, Qin A, et al. Targeting skeletal endothelium to ameliorate bone loss. Nat Med, 2018, 24(6): 823-833.
|
12. |
Chen K, Liao S, Li Y, et al. Osteoblast-derived EGFL6 couples angiogenesis to osteogenesis during bone repair. Theranostics, 2021, 11(20): 9738-9751.
|
13. |
Guan S, Zhang Z, Wu J. Non-coding RNA delivery for bone tissue engineering: Progress, challenges, and potential solutions. iScience, 2022, 25(8): 104807. doi: 10.1016/j.isci.2022.104807.
|
14. |
Bellavia D, Salamanna F, Raimondi L, et al. Deregulated miRNAs in osteoporosis: effects in bone metastasis. Cell Mol Life Sci, 2019, 76(19): 3723-3744.
|
15. |
王亮, 顾剑, 赵宇, 等. 髋部骨折患者骨内H型血管的变化. 中华骨质疏松和骨矿盐疾病杂志, 2020, 13(6): 516-521.
|
16. |
陈赛楠, 黄云梅, 林燕萍, 等. miR-148-5p靶向H型血管调控因子Slit3的实验研究. 中国骨质疏松杂志, 2022, 28(7): 959-965.
|
17. |
Wang X, Li X, Li J, et al. Mechanical loading stimulates bone angiogenesis through enhancing type H vessel formation and downregulating exosomal miR-214-3p from bone marrow-derived mesenchymal stem cells. FASEB J, 2021, 35(1): e21150. doi: 10.1096/fj.202001080RR.
|
18. |
He WZ, Yang M, Jiang Y, et al. miR-188-3p targets skeletal endothelium coupling of angiogenesis and osteogenesis during ageing. Cell Death Dis, 2022, 13(5): 494. doi: 10.1038/s41419-022-04902-w.
|
19. |
Lu J, Zhang H, Cai D, et al. Positive-feedback regulation of subchondral H-type vessel formation by chondrocyte promotes osteoarthritis development in mice. J Bone Miner Res, 2018, 33(5): 909-920.
|
20. |
Wang R, Xu B. TGFβ1-modified MSC-derived exosome attenuates osteoarthritis by inhibiting PDGF-BB secretion and H-type vessel activity in the subchondral bone. Acta Histochem, 2022, 124(7): 151933. doi: 10.1016/j.acthis.2022.151933.
|
21. |
Wood J, Bonjean K, Ruetz S, et al. Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther, 2002, 302(3): 1055-1061.
|
22. |
Yan ZQ, Wang XK, Zhou Y, et al. H-type blood vessels participate in alveolar bone remodeling during murine tooth extraction healing. Oral Dis, 2020, 26(5): 998-1009.
|
23. |
Shen X, Zhu W, Zhang P, et al. Macrophage miR-149-5p induction is a key driver and therapeutic target for BRONJ. JCI Insight, 2022, 7(16): e159865. doi: 10.1172/jci.insight.159865.
|
24. |
He H, Luo H, Liu L, et al. Prenatal caffeine exposure caused H-type blood vessel-related long bone dysplasia via miR375/CTGF signaling. FASEB J, 2021, 35(2): e21370. doi: 10.1096/fj.202002230R.
|
25. |
Yang M, Li CJ, Sun X, et al. MiR-497~195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1α activity. Nat Commun, 2017, 8: 16003. doi: 10.1038/ncomms16003.
|
26. |
Dou C, Zhang C, Kang F, et al. MiR-7b directly targets DC-STAMP causing suppression of NFATc1 and c-Fos signaling during osteoclast fusion and differentiation. Biochim Biophys Acta, 2014, 1839(11): 1084-1096.
|
27. |
Dou C, Ding N, Luo F, et al. Graphene-based microRNA transfection blocks preosteoclast fusion to increase bone formation and vascularization. Adv Sci (Weinh), 2017, 5(2): 1700578. doi: 10.1002/advs.201700578.
|
28. |
Chen Y, Yu H, Zhu D, et al. miR-136-3p targets PTEN to regulate vascularization and bone formation and ameliorates alcohol-induced osteopenia. FASEB J, 2020, 34(4): 5348-5362.
|
29. |
Wang R, Zhang H, Ding W, et al. miR-143 promotes angiogenesis and osteoblast differentiation by targeting HDAC7. Cell Death Dis, 2020, 11(3): 179. doi: 10.1038/s41419-020-2377-4.
|
30. |
Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev, 2009, 23(13): 1494-1504.
|
31. |
Leupin O, Piters E, Halleux C, et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem, 2011, 286(22): 19489-19500.
|
32. |
Yang M, Guo Q, Peng H, et al. Krüppel-like factor 3 inhibition by mutated lncRNA Reg1cp results in human high bone mass syndrome. J Exp Med, 2019, 216(8): 1944-1964.
|
33. |
Yang M, Li CJ, Xiao Y, et al. Ophiopogonin D promotes bone regeneration by stimulating CD31hi EMCNhi vessel formation. Cell Prolif, 2020, 53(3): e12784. doi: 10.1111/cpr.12784.
|
34. |
Ma Q, Liang M, Limjunyawong N, et al. Osteoclast-derived apoptotic bodies show extended biological effects of parental cell in promoting bone defect healing. Theranostics, 2020, 10(15): 6825-6838.
|
35. |
Bai Y, Gong X, Dong R, et al. Long non-coding RNA HCAR promotes endochondral bone repair by upregulating VEGF and MMP13 in hypertrophic chondrocyte through sponging miR-15b-5p. Genes Dis, 2020, 9(2): 456-465.
|
36. |
Alshaer W, Zureigat H, Al Karaki A, et al. siRNA: Mechanism of action, challenges, and therapeutic approaches. Eur J Pharmacol, 2021, 905: 174178. doi: 10.1016/j.ejphar.2021.174178.
|
37. |
Leng Q, Chen L, Lv Y. RNA-based scaffolds for bone regeneration: application and mechanisms of mRNA, miRNA and siRNA. Theranostics, 2020, 10(7): 3190-3205.
|
38. |
Cui Y, Guo Y, Kong L, et al. A bone-targeted engineered exosome platform delivering siRNA to treat osteoporosis. Bioact Mater, 2021, 10: 207-221.
|
39. |
Liang S, Ling S, Du R, et al. The coupling of reduced type H vessels with unloading-induced bone loss and the protection role of Panax quinquefolium saponin in the male mice. Bone, 2021, 143: 115712. doi: 10.1016/j.bone.2020.115712.
|
40. |
Yang C, Liu Y, Wang Z, et al. Controlled mechanical loading improves bone regeneration by regulating type H vessels in a S1Pr1-dependent manner. FASEB J, 2022, 36(10): e22530. doi: 10.1096/fj.202200339RRR.
|
41. |
Huang J, Li YY, Xia K, et al. Harmine targets inhibitor of DNA binding-2 and activator protein-1 to promote preosteoclast PDGF-BB production. J Cell Mol Med, 2021, 25(12): 5525-5533.
|
42. |
Li Z, Xue H, Tan G, et al. Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review). Mol Med Rep, 2021, 24(5): 788. doi: 10.3892/mmr.2021.12428.
|
43. |
Wu W, Lu BF, Jiang RQ, et al. The function and regulation mechanism of piRNAs in human cancers. Histol Histopathol, 2021, 36(8): 807-816.
|
44. |
Hueso M, Mallén A, Suñé-Pou M, et al. ncRNAs in therapeutics: Challenges and limitations in nucleic acid-based drug delivery. Int J Mol Sci, 2021, 22(21): 11596. doi: 10.3390/ijms222111596.
|