1. |
Han J, Lee C, Jung Y. Deficiency of formyl peptide receptor 2 retards hair regeneration by modulating the activation of hair follicle stem cells and dermal papilla cells in mice. Dev Reprod, 2021, 25(4): 279-291.
|
2. |
Miao Y, Qu Q, Jiang W, et al. Identification of functional patterns of androgenetic alopecia using transcriptome profiling in distinct locations of hair follicles. J Invest Dermatol, 2018, 138(4): 972-975.
|
3. |
Owczarczyk-Saczonek A, Krajewska-Włodarczyk M, Kruszewska A, et al. Therapeutic potential of stem cells in follicle regeneration. Stem Cells Int, 2018, 2018: 1049641. doi: 10.1155/2018/1049641.
|
4. |
Chen CL, Huang WY, Wang EHC, et al. Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration. J Biomed Sci, 2020, 27(1): 43. doi: 10.1186/s12929-020-0624-8.
|
5. |
Boddu S, Hashim PW, Nia JK, et al. Regenerative medicine in cosmetic dermatology. Cutis, 2018, 101(1): 33-36.
|
6. |
Yi R. Concise review: Mechanisms of quiescent hair follicle stem cell regulation. Stem Cells, 2017, 35(12): 2323-2330.
|
7. |
Kageyama T, Yan L, Shimizu A, et al. Preparation of hair beads and hair follicle germs for regenerative medicine. Biomaterials, 2019, 212: 55-63.
|
8. |
Gentile P, Scioli MG, Bielli A, et al. Platelet-rich plasma and micrografts enriched with autologous human follicle mesenchymal stem cells improve hair re-growth in androgenetic alopecia. Biomolecular pathway analysis and clinical evaluation. Biomedicines, 2019, 7(2): 27. doi: 10.3390/biomedicines7020027.
|
9. |
Liu Y, Yang S, Zeng Y, et al. Dysregulated behaviour of hair follicle stem cells triggers alopecia and provides potential therapeutic targets. Exp Dermatol, 2022, 31(7): 986-992.
|
10. |
Chovatiya G, Ghuwalewala S, Walter LD, et al. High-resolution single-cell transcriptomics reveals heterogeneity of self-renewing hair follicle stem cells. Exp Dermatol, 2021, 30(4): 457-471.
|
11. |
Hu XM, Li ZX, Zhang DY, et al. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Res Ther, 2021, 12(1): 453. doi: 10.1186/s13287-021-02527-y.
|
12. |
Zhang X, Lei T, Chen P, et al. Stem cells from human exfoliated deciduous teeth promote hair regeneration in mouse. Cell Transplant, 2021, 30: 9636897211042927. doi: 10.1177/09636897211042927.
|
13. |
Morinaga H, Mohri Y, Grachtchouk M, et al. Obesity accelerates hair thinning by stem cell-centric converging mechanisms. Nature, 2021, 595(7866): 266-271.
|
14. |
Abe Y, Tanaka N. Roles of the Hedgehog signaling pathway in epidermal and hair follicle development, homeostasis, and cancer. J Dev Biol, 2017, 5(4): 12. doi: 10.3390/jdb5040012.
|
15. |
Doeppner TR, Ewert TA, Tönges L, et al. Transduction of neural precursor cells with TAT-heat shock protein 70 chaperone: therapeutic potential against ischemic stroke after intrastriatal and systemic transplantation. Stem Cells, 2012, 30(6): 1297-1310.
|
16. |
Shin JM, Ko JW, Choi CW, et al. Deficiency of Crif1 in hair follicle stem cells retards hair growth cycle in adult mice. PLoS One, 2020, 15(4): e0232206. doi: 10.1371/journal.pone.0232206.
|
17. |
He N, Su R, Wang Z, et al. Exploring differentially expressed genes between anagen and telogen secondary hair follicle stem cells from the Cashmere goat (Capra hircus) by RNA-Seq. PLoS One, 2020, 15(4): e0231376. doi: 10.1371/journal.pone.0231376.
|
18. |
Fan J, Li H, Kuang L, et al. Identification of a potent antagonist of smoothened in hedgehog signaling. Cell Biosci, 2021, 11(1): 46. doi: 10.1186/s13578-021-00558-9.
|
19. |
Ohyama M. Use of human intra-tissue stem/progenitor cells and induced pluripotent stem cells for hair follicle regeneration. Inflamm Regen, 2019, 39: 4. doi: 10.1186/s41232-019-0093-1.
|
20. |
Flora P, Li MY, Galbo PM, et al. Polycomb repressive complex 2 in adult hair follicle stem cells is dispensable for hair regeneration. PLoS Genet, 2021, 17(12): e1009948. doi: 10.1371/journal.pgen.1009948.
|
21. |
Babakhani A, Nobakht M, Pazoki Torodi H, et al. Effects of hair follicle stem cells on partial-thickness burn wound healing and tensile strength. Iran Biomed J, 2020, 24(2): 99-109.
|
22. |
Jin F, Li M, Li X, et al. DNMT1-mediated methylation inhibits microRNA-214-3p and promotes hair follicle stem cell differentiate into adipogenic lineages. Stem Cell Res Ther, 2020, 11(1): 444. doi: 10.1186/s13287-020-01864-8.
|
23. |
Lin B, Zhu J, Yin G, et al. Transcription factor DLX5 promotes hair follicle stem cell differentiation by regulating the c-MYC/microRNA-29c-3p/NSD1 axis. Front Cell Dev Biol, 2021, 9: 554831. doi: 10.3389/fcell.2021.554831.
|
24. |
Liu F, Shi J, Zhang Y, et al. NANOG attenuates hair follicle-derived mesenchymal stem cell senescence by upregulating PBX1 and activating AKT signaling. Oxid Med Cell Longev, 2019, 2019: 4286213. doi: 10.1155/2019/4286213.
|
25. |
Fan SM, Chang YT, Chen CL, et al. External light activates hair follicle stem cells through eyes via an ipRGC-SCN-sympathetic neural pathway. Proc Natl Acad Sci U S A, 2018, 115(29): E6880-E6889.
|
26. |
Fukuyama M, Tsukashima A, Kimishima M, et al. Human iPS cell-derived cell aggregates exhibited dermal papilla cell properties in in vitro three-dimensional assemblage mimicking hair follicle structures. Front Cell Dev Biol, 2021, 9: 590333. doi: 10.3389/fcell.2021.590333.
|
27. |
Strazzulla LC, Wang EHC, Avila L, et al. Alopecia areata: Disease characteristics, clinical evaluation, and new perspectives on pathogenesis. J Am Acad Dermatol, 2018, 78(1): 1-12.
|
28. |
Kanti V, Messenger A, Dobos G, et al. Evidence-based (S3) guideline for the treatment of androgenetic alopecia in women and in men-short version. J Eur Acad Dermatol Venereol, 2018, 32(1): 11-22.
|
29. |
Egger A, Tomic-Canic M, Tosti A. Advances in stem cell-based therapy for hair loss. CellR4 Repair Replace Regen Reprogram, 2020, 8: e2894.
|
30. |
Schneider MR, Schmidt-Ullrich R, Paus R. The hair follicle as a dynamic miniorgan. Curr Biol, 2009, 19(3): R132-R142.
|
31. |
Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol, 2006, 22: 339-373.
|