- 1. Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, P. R. China;
- 2. Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, Zunyi Guizhou, 563003, P. R. China;
Citation: CHEN Junzhe, DENG Chengliang. Research advances on stem cell-based treatments in animal studies and clinical trials of lymphedema. Chinese Journal of Reparative and Reconstructive Surgery, 2024, 38(1): 99-106. doi: 10.7507/1002-1892.202309045 Copy
1. | Brown S, Dayan JH, Kataru RP, et al. The vicious circle of stasis, inflammation, and fibrosis in lymphedema. Plast Reconstr Surg, 2023, 151(2): 330e-341e. |
2. | Schulze H, Nacke M, Gutenbrunner C, et al. Worldwide assessment of healthcare personnel dealing with lymphoedema. Health Econ Rev, 2018, 8(1): 10. |
3. | McLaughlin SA, Brunelle CL, Taghian A. Breast cancer-related lymphedema: Risk factors, screening, management, and the impact of locoregional treatment. J Clin Oncol, 2020, 38(20): 2341-2350. |
4. | Ogino R, Yokooji T, Hayashida M, et al. Emerging anti-inflammatory pharmacotherapy and cell-based therapy for lymphedema. Int J Mol Sci, 2022, 23(14): 7614. |
5. | Barufi S, Pereira de Godoy HJ, Pereira de Godoy JM, et al. Exercising and compression mechanism in the treatment of lymphedema. Cureus, 2021, 13(7): e16121. |
6. | Donahue PMC, MacKenzie A, Filipovic A, et al. Advances in the prevention and treatment of breast cancer-related lymphedema. Breast Cancer Res Treat, 2023, 200(1): 1-14. |
7. | Nicenboim J, Malkinson G, Lupo T, et al. Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature, 2015, 522(7554): 56-61. |
8. | Oliver G, Kipnis J, Randolph GJ, et al. The lymphatic vasculature in the 21st century: Novel functional roles in homeostasis and disease. Cell, 2020, 182(2): 270-296. |
9. | Baluk P, Fuxe J, Hashizume H, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med, 2007, 204(10): 2349-2362. |
10. | Tammela T, Alitalo K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell, 2010, 140(4): 460-476. |
11. | Rockson SG. Advances in lymphedema. Circ Res, 2021, 128(12): 2003-2016. |
12. | Ly CL, Nores GDG, Kataru RP, et al. T helper 2 differentiation is necessary for development of lymphedema. Transl Res, 2019, 206: 57-70. |
13. | Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature, 2020, 587(7835): 555-566. |
14. | Zhao W, Zhang H, Liu R, et al. Advances in immunomodulatory mechanisms of mesenchymal stem cells-derived exosome on immune cells in scar formation. Int J Nanomedicine, 2023, 18: 3643-3662. |
15. | Ogino R, Hayashida K, Yamakawa S, et al. Adipose-derived stem cells promote intussusceptive lymphangiogenesis by restricting dermal fibrosis in irradiated tissue of mice. Int J Mol Sci, 2020, 21(11): 3885. |
16. | Baik JE, Park HJ, Kataru RP, et al. TGF-β1 mediates pathologic changes of secondary lymphedema by promoting fibrosis and inflammation. Clin Transl Med, 2022, 12(6): e758. |
17. | Yoon SH, Kim KY, Wang Z, et al. EW-7197, a transforming growth factor-beta type Ⅰ receptor kinase inhibitor, ameliorates acquired lymphedema in a mouse tail model. Lymphat Res Biol, 2020, 18(5): 433-438. |
18. | Levy D, Abadchi SN, Shababi N, et al. Induced pluripotent stem cell-derived extracellular vesicles promote wound repair in a diabetic mouse model via an anti-inflammatory immunomodulatory mechanism. Adv Healthc Mater, 2023, 12(26): e2300879. |
19. | Huethorst E, Krebber MM, Fledderus JO, et al. Lymphatic vascular regeneration: The next step in tissue engineering. Tissue Eng Part B Rev, 2016, 22(1): 1-14. |
20. | Saijo H, Suzuki K, Yoshimoto H, et al. Paracrine effects of adipose-derived stem cells promote lymphangiogenesis in irradiated lymphatic endothelial cells. Plast Reconstr Surg, 2019, 143(6): 1189e-1200e. |
21. | Cao R, Ji H, Feng N, et al. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc Natl Acad Sci U S A, 2012, 109(39): 15894-15899. |
22. | Saito Y, Nakagami H, Morishita R, et al. Transfection of human hepatocyte growth factor gene ameliorates secondary lymphedema via promotion of lymphangiogenesis. Circulation, 2006, 114(11): 1177-1184. |
23. | Dai T, Jiang Z, Cui C, et al. The roles of podoplanin-positive/podoplanin-negative cells from adipose-derived stem cells in lymphatic regeneration. Plast Reconstr Surg, 2020, 145(2): 420-431. |
24. | Yoshida S, Hamuy R, Hamada Y, et al. Adipose-derived stem cell transplantation for therapeutic lymphangiogenesis in a mouse secondary lymphedema model. Regen Med, 2015, 10(5): 549-562. |
25. | Shimizu Y, Shibata R, Shintani S, et al. Therapeutic lymphangiogenesis with implantation of adipose-derived regenerative cells. J Am Heart Assoc, 2012, 1(4): e000877. |
26. | Will PA, Kilian K, Bieback K, et al. Lymphedema-associated fibroblasts are a TGF-β1 activated myofibroblast subpopulation related to fibrosis and stage progression in patients and a murine microsurgical model. Plast Reconstr Surg, 2023. |
27. | Wang T, Sharma AK, Wolfrum C. Novel insights into adipose tissue heterogeneity. Rev Endocr Metab Disord, 2022, 23(1): 5-12. |
28. | Bucan A, Dhumale P, Jørgensen MG, et al. Comparison between stromal vascular fraction and adipose derived stem cells in a mouse lymphedema model. J Plast Surg Hand Surg, 2020, 54(5): 302-311. |
29. | Später T, Tobias AL, Menger MM, et al. Biological coating with platelet-rich plasma and adipose tissue-derived microvascular fragments improves the vascularization, biocompatibility and tissue incorporation of porous polyethylene. Acta Biomater, 2020, 108: 194-206. |
30. | Frueh FS, Später T, Körbel C, et al. Prevascularization of dermal substitutes with adipose tissue-derived microvascular fragments enhances early skin grafting. Sci Rep, 2018, 8(1): 10977. |
31. | Frueh FS, Später T, Lindenblatt N, et al. Adipose tissue-derived microvascular fragments improve vascularization, lymphangiogenesis, and integration of dermal skin substitutes. J Invest Dermatol, 2017, 137(1): 217-227. |
32. | Frueh FS, Gassert L, Scheuer C, et al. Adipose tissue-derived microvascular fragments promote lymphangiogenesis in a murine lymphedema model. J Tissue Eng, 2022, 13: 20417314221109957. |
33. | Li ZJ, Yang E, Li YZ, et al. Application and prospect of adipose stem cell transplantation in treating lymphedema. World J Stem Cells, 2020, 12(7): 676-687. |
34. | Hwang JH, Kim IG, Lee JY, et al. Therapeutic lymphangiogenesis using stem cell and VEGF-C hydrogel. Biomaterials, 2011, 32(19): 4415-4423. |
35. | He M, Chen T, Lv Y, et al. The role of allogeneic platelet-rich plasma in patients with diabetic foot ulcer: Current perspectives and future challenges. Front Bioeng Biotechnol, 2022, 10: 993436. |
36. | Ackermann M, Wettstein R, Senaldi C, et al. Impact of platelet rich plasma and adipose stem cells on lymphangiogenesis in a murine tail lymphedema model. Microvasc Res, 2015, 102: 78-85. |
37. | Bianchi LMG, Irmici G, Cè M, et al. Diagnosis and treatment of post-prostatectomy lymphedema: What’s new? Curr Oncol, 2023, 30(5): 4512-4526. |
38. | Hayashida K, Yoshida S, Yoshimoto H, et al. Adipose-derived stem cells and vascularized lymph node transfers successfully treat mouse hindlimb secondary lymphedema by early reconnection of the lymphatic system and lymphangiogenesis. Plast Reconstr Surg, 2017, 139(3): 639-651. |
39. | Jonas F, Kesa P, Paral P, et al. The effect of vascular endothelial growth factor C and adipose-derived stem cells on lymphatic regeneration in a rat vascularized lymph node transfer model. J Reconstr Microsurg, 2023, 39(4): 311-319. |
40. | Conrad C, Niess H, Huss R, et al. Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo. Circulation, 2009, 119(2): 281-289. |
41. | Beerens M, Aranguren XL, Hendrickx B, et al. Multipotent adult progenitor cells support lymphatic regeneration at multiple anatomical levels during wound healing and lymphedema. Sci Rep, 2018, 8(1): 3852. |
42. | Asaad M, Hanson SE. Tissue engineering strategies for cancer-related lymphedema. Tissue Eng Part A, 2021, 27(7-8): 489-499. |
43. | Zhou H, Wang M, Hou C, et al. Exogenous VEGF-C augments the efficacy of therapeutic lymphangiogenesis induced by allogenic bone marrow stromal cells in a rabbit model of limb secondary lymphedema. Jpn J Clin Oncol, 2011, 41(7): 841-846. |
44. | Michalaki E, Rudd JM, Liebman L, et al. Lentiviral overexpression of VEGFC in transplanted MSCs leads to resolution of swelling in a mouse tail lymphedema model. Microcirculation, 2023, 30(2-3): e12792. |
45. | Park HS, Jung IM, Choi GH, et al. Modification of a rodent hindlimb model of secondary lymphedema: surgical radicality versus radiotherapeutic ablation. Biomed Res Int, 2013, 2013: 208912. |
46. | Jørgensen MG, Toyserkani NM, Hansen CR, et al. Quantification of chronic lymphedema in a revised mouse model. Ann Plast Surg, 2018, 81(5): 594-603. |
47. | Peña Quián Y, Hernández Ramirez P, Batista Cuellar JF, et al. Lymphoscintigraphy for the assessment of autologous stem cell implantation in chronic lymphedema. Clin Nucl Med, 2015, 40(3): 217-219. |
48. | Toyserkani NM, Jensen CH, Sheikh SP, et al. Cell-assisted lipotransfer using autologous adipose-derived stromal cells for alleviation of breast cancer-related lymphedema. Stem Cells Transl Med, 2016, 5(7): 857-859. |
49. | Jørgensen MG, Toyserkani NM, Jensen CH, et al. Adipose-derived regenerative cells and lipotransfer in alleviating breast cancer-related lymphedema: An open-label phase Ⅰ trial with 4 years of follow-up. Stem Cells Transl Med, 2021, 10(6): 844-854. |
50. | Toyserkani NM, Jensen CH, Tabatabaeifar S, et al. Adipose-derived regenerative cells and fat grafting for treating breast cancer-related lymphedema: Lymphoscintigraphic evaluation with 1 year of follow-up. J Plast Reconstr Aesthet Surg, 2019, 72(1): 71-77. |
51. | Toyserkani NM, Jensen CH, Andersen DC, et al. Treatment of breast cancer-related lymphedema with adipose-derived regenerative cells and fat grafts: A feasibility and safety study. Stem Cells Transl Med, 2017, 6(8): 1666-1672. |
52. | Hou C, Wu X, Jin X. Autologous bone marrow stromal cells transplantation for the treatment of secondary arm lymphedema: a prospective controlled study in patients with breast cancer related lymphedema. Jpn J Clin Oncol, 2008, 38(10): 670-674. |
53. | Maldonado GE, Pérez CA, Covarrubias EE, et al. Autologous stem cells for the treatment of post-mastectomy lymphedema: a pilot study. Cytotherapy, 2011, 13(10): 1249-1255. |
54. | Ismail AM, Abdou SM, Abdelnaby AY, et al. Stem cell therapy using bone marrow-derived mononuclear cells in treatment of lower limb lymphedema: A randomized controlled clinical trial. Lymphat Res Biol, 2018, 16(3): 270-277. |
55. | Ehyaeeghodraty V, Molavi B, Nikbakht M, et al. Effects of mobilized peripheral blood stem cells on treatment of primary lower extremity lymphedema. J Vasc Surg Venous Lymphat Disord, 2020, 8(3): 445-451. |
56. | Rochlin DH, Inchauste S, Zelones J, et al. The role of adjunct nanofibrillar collagen scaffold implantation in the surgical management of secondary lymphedema: Review of the literature and summary of initial pilot studies. J Surg Oncol, 2020, 121(1): 121-128. |
57. | Hadamitzky C, Zaitseva TS, Bazalova-Carter M, et al. Aligned nanofibrillar collagen scaffolds-guiding lymphangiogenesis for treatment of acquired lymphedema. Biomaterials, 2016, 102: 259-267. |
58. | Nguyen D, Zaitseva TS, Zhou A, et al. Lymphatic regeneration after implantation of aligned nanofibrillar collagen scaffolds: Preliminary preclinical and clinical results. J Surg Oncol, 2022, 125(2): 113-122. |
59. | Jia W, He W, Wang G, et al. Enhancement of lymphangiogenesis by human mesenchymal stem cell sheet. Adv Healthc Mater, 2022, 11(16): e2200464. |
60. | Kang HJ, Moon SY, Kim BK, et al. Recellularized lymph node scaffolds with human adipose-derived stem cells enhance lymph node regeneration to improve lymphedema. Sci Rep, 2023, 13(1): 5397. |
61. | Lu JH, Hsia K, Su CK, et al. A novel dressing composed of adipose stem cells and decellularized Wharton’s jelly facilitated wound healing and relieved lymphedema by enhancing angiogenesis and lymphangiogenesis in a rat model. J Funct Biomater, 2023, 14(2): 104. |
- 1. Brown S, Dayan JH, Kataru RP, et al. The vicious circle of stasis, inflammation, and fibrosis in lymphedema. Plast Reconstr Surg, 2023, 151(2): 330e-341e.
- 2. Schulze H, Nacke M, Gutenbrunner C, et al. Worldwide assessment of healthcare personnel dealing with lymphoedema. Health Econ Rev, 2018, 8(1): 10.
- 3. McLaughlin SA, Brunelle CL, Taghian A. Breast cancer-related lymphedema: Risk factors, screening, management, and the impact of locoregional treatment. J Clin Oncol, 2020, 38(20): 2341-2350.
- 4. Ogino R, Yokooji T, Hayashida M, et al. Emerging anti-inflammatory pharmacotherapy and cell-based therapy for lymphedema. Int J Mol Sci, 2022, 23(14): 7614.
- 5. Barufi S, Pereira de Godoy HJ, Pereira de Godoy JM, et al. Exercising and compression mechanism in the treatment of lymphedema. Cureus, 2021, 13(7): e16121.
- 6. Donahue PMC, MacKenzie A, Filipovic A, et al. Advances in the prevention and treatment of breast cancer-related lymphedema. Breast Cancer Res Treat, 2023, 200(1): 1-14.
- 7. Nicenboim J, Malkinson G, Lupo T, et al. Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature, 2015, 522(7554): 56-61.
- 8. Oliver G, Kipnis J, Randolph GJ, et al. The lymphatic vasculature in the 21st century: Novel functional roles in homeostasis and disease. Cell, 2020, 182(2): 270-296.
- 9. Baluk P, Fuxe J, Hashizume H, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med, 2007, 204(10): 2349-2362.
- 10. Tammela T, Alitalo K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell, 2010, 140(4): 460-476.
- 11. Rockson SG. Advances in lymphedema. Circ Res, 2021, 128(12): 2003-2016.
- 12. Ly CL, Nores GDG, Kataru RP, et al. T helper 2 differentiation is necessary for development of lymphedema. Transl Res, 2019, 206: 57-70.
- 13. Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature, 2020, 587(7835): 555-566.
- 14. Zhao W, Zhang H, Liu R, et al. Advances in immunomodulatory mechanisms of mesenchymal stem cells-derived exosome on immune cells in scar formation. Int J Nanomedicine, 2023, 18: 3643-3662.
- 15. Ogino R, Hayashida K, Yamakawa S, et al. Adipose-derived stem cells promote intussusceptive lymphangiogenesis by restricting dermal fibrosis in irradiated tissue of mice. Int J Mol Sci, 2020, 21(11): 3885.
- 16. Baik JE, Park HJ, Kataru RP, et al. TGF-β1 mediates pathologic changes of secondary lymphedema by promoting fibrosis and inflammation. Clin Transl Med, 2022, 12(6): e758.
- 17. Yoon SH, Kim KY, Wang Z, et al. EW-7197, a transforming growth factor-beta type Ⅰ receptor kinase inhibitor, ameliorates acquired lymphedema in a mouse tail model. Lymphat Res Biol, 2020, 18(5): 433-438.
- 18. Levy D, Abadchi SN, Shababi N, et al. Induced pluripotent stem cell-derived extracellular vesicles promote wound repair in a diabetic mouse model via an anti-inflammatory immunomodulatory mechanism. Adv Healthc Mater, 2023, 12(26): e2300879.
- 19. Huethorst E, Krebber MM, Fledderus JO, et al. Lymphatic vascular regeneration: The next step in tissue engineering. Tissue Eng Part B Rev, 2016, 22(1): 1-14.
- 20. Saijo H, Suzuki K, Yoshimoto H, et al. Paracrine effects of adipose-derived stem cells promote lymphangiogenesis in irradiated lymphatic endothelial cells. Plast Reconstr Surg, 2019, 143(6): 1189e-1200e.
- 21. Cao R, Ji H, Feng N, et al. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc Natl Acad Sci U S A, 2012, 109(39): 15894-15899.
- 22. Saito Y, Nakagami H, Morishita R, et al. Transfection of human hepatocyte growth factor gene ameliorates secondary lymphedema via promotion of lymphangiogenesis. Circulation, 2006, 114(11): 1177-1184.
- 23. Dai T, Jiang Z, Cui C, et al. The roles of podoplanin-positive/podoplanin-negative cells from adipose-derived stem cells in lymphatic regeneration. Plast Reconstr Surg, 2020, 145(2): 420-431.
- 24. Yoshida S, Hamuy R, Hamada Y, et al. Adipose-derived stem cell transplantation for therapeutic lymphangiogenesis in a mouse secondary lymphedema model. Regen Med, 2015, 10(5): 549-562.
- 25. Shimizu Y, Shibata R, Shintani S, et al. Therapeutic lymphangiogenesis with implantation of adipose-derived regenerative cells. J Am Heart Assoc, 2012, 1(4): e000877.
- 26. Will PA, Kilian K, Bieback K, et al. Lymphedema-associated fibroblasts are a TGF-β1 activated myofibroblast subpopulation related to fibrosis and stage progression in patients and a murine microsurgical model. Plast Reconstr Surg, 2023.
- 27. Wang T, Sharma AK, Wolfrum C. Novel insights into adipose tissue heterogeneity. Rev Endocr Metab Disord, 2022, 23(1): 5-12.
- 28. Bucan A, Dhumale P, Jørgensen MG, et al. Comparison between stromal vascular fraction and adipose derived stem cells in a mouse lymphedema model. J Plast Surg Hand Surg, 2020, 54(5): 302-311.
- 29. Später T, Tobias AL, Menger MM, et al. Biological coating with platelet-rich plasma and adipose tissue-derived microvascular fragments improves the vascularization, biocompatibility and tissue incorporation of porous polyethylene. Acta Biomater, 2020, 108: 194-206.
- 30. Frueh FS, Später T, Körbel C, et al. Prevascularization of dermal substitutes with adipose tissue-derived microvascular fragments enhances early skin grafting. Sci Rep, 2018, 8(1): 10977.
- 31. Frueh FS, Später T, Lindenblatt N, et al. Adipose tissue-derived microvascular fragments improve vascularization, lymphangiogenesis, and integration of dermal skin substitutes. J Invest Dermatol, 2017, 137(1): 217-227.
- 32. Frueh FS, Gassert L, Scheuer C, et al. Adipose tissue-derived microvascular fragments promote lymphangiogenesis in a murine lymphedema model. J Tissue Eng, 2022, 13: 20417314221109957.
- 33. Li ZJ, Yang E, Li YZ, et al. Application and prospect of adipose stem cell transplantation in treating lymphedema. World J Stem Cells, 2020, 12(7): 676-687.
- 34. Hwang JH, Kim IG, Lee JY, et al. Therapeutic lymphangiogenesis using stem cell and VEGF-C hydrogel. Biomaterials, 2011, 32(19): 4415-4423.
- 35. He M, Chen T, Lv Y, et al. The role of allogeneic platelet-rich plasma in patients with diabetic foot ulcer: Current perspectives and future challenges. Front Bioeng Biotechnol, 2022, 10: 993436.
- 36. Ackermann M, Wettstein R, Senaldi C, et al. Impact of platelet rich plasma and adipose stem cells on lymphangiogenesis in a murine tail lymphedema model. Microvasc Res, 2015, 102: 78-85.
- 37. Bianchi LMG, Irmici G, Cè M, et al. Diagnosis and treatment of post-prostatectomy lymphedema: What’s new? Curr Oncol, 2023, 30(5): 4512-4526.
- 38. Hayashida K, Yoshida S, Yoshimoto H, et al. Adipose-derived stem cells and vascularized lymph node transfers successfully treat mouse hindlimb secondary lymphedema by early reconnection of the lymphatic system and lymphangiogenesis. Plast Reconstr Surg, 2017, 139(3): 639-651.
- 39. Jonas F, Kesa P, Paral P, et al. The effect of vascular endothelial growth factor C and adipose-derived stem cells on lymphatic regeneration in a rat vascularized lymph node transfer model. J Reconstr Microsurg, 2023, 39(4): 311-319.
- 40. Conrad C, Niess H, Huss R, et al. Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo. Circulation, 2009, 119(2): 281-289.
- 41. Beerens M, Aranguren XL, Hendrickx B, et al. Multipotent adult progenitor cells support lymphatic regeneration at multiple anatomical levels during wound healing and lymphedema. Sci Rep, 2018, 8(1): 3852.
- 42. Asaad M, Hanson SE. Tissue engineering strategies for cancer-related lymphedema. Tissue Eng Part A, 2021, 27(7-8): 489-499.
- 43. Zhou H, Wang M, Hou C, et al. Exogenous VEGF-C augments the efficacy of therapeutic lymphangiogenesis induced by allogenic bone marrow stromal cells in a rabbit model of limb secondary lymphedema. Jpn J Clin Oncol, 2011, 41(7): 841-846.
- 44. Michalaki E, Rudd JM, Liebman L, et al. Lentiviral overexpression of VEGFC in transplanted MSCs leads to resolution of swelling in a mouse tail lymphedema model. Microcirculation, 2023, 30(2-3): e12792.
- 45. Park HS, Jung IM, Choi GH, et al. Modification of a rodent hindlimb model of secondary lymphedema: surgical radicality versus radiotherapeutic ablation. Biomed Res Int, 2013, 2013: 208912.
- 46. Jørgensen MG, Toyserkani NM, Hansen CR, et al. Quantification of chronic lymphedema in a revised mouse model. Ann Plast Surg, 2018, 81(5): 594-603.
- 47. Peña Quián Y, Hernández Ramirez P, Batista Cuellar JF, et al. Lymphoscintigraphy for the assessment of autologous stem cell implantation in chronic lymphedema. Clin Nucl Med, 2015, 40(3): 217-219.
- 48. Toyserkani NM, Jensen CH, Sheikh SP, et al. Cell-assisted lipotransfer using autologous adipose-derived stromal cells for alleviation of breast cancer-related lymphedema. Stem Cells Transl Med, 2016, 5(7): 857-859.
- 49. Jørgensen MG, Toyserkani NM, Jensen CH, et al. Adipose-derived regenerative cells and lipotransfer in alleviating breast cancer-related lymphedema: An open-label phase Ⅰ trial with 4 years of follow-up. Stem Cells Transl Med, 2021, 10(6): 844-854.
- 50. Toyserkani NM, Jensen CH, Tabatabaeifar S, et al. Adipose-derived regenerative cells and fat grafting for treating breast cancer-related lymphedema: Lymphoscintigraphic evaluation with 1 year of follow-up. J Plast Reconstr Aesthet Surg, 2019, 72(1): 71-77.
- 51. Toyserkani NM, Jensen CH, Andersen DC, et al. Treatment of breast cancer-related lymphedema with adipose-derived regenerative cells and fat grafts: A feasibility and safety study. Stem Cells Transl Med, 2017, 6(8): 1666-1672.
- 52. Hou C, Wu X, Jin X. Autologous bone marrow stromal cells transplantation for the treatment of secondary arm lymphedema: a prospective controlled study in patients with breast cancer related lymphedema. Jpn J Clin Oncol, 2008, 38(10): 670-674.
- 53. Maldonado GE, Pérez CA, Covarrubias EE, et al. Autologous stem cells for the treatment of post-mastectomy lymphedema: a pilot study. Cytotherapy, 2011, 13(10): 1249-1255.
- 54. Ismail AM, Abdou SM, Abdelnaby AY, et al. Stem cell therapy using bone marrow-derived mononuclear cells in treatment of lower limb lymphedema: A randomized controlled clinical trial. Lymphat Res Biol, 2018, 16(3): 270-277.
- 55. Ehyaeeghodraty V, Molavi B, Nikbakht M, et al. Effects of mobilized peripheral blood stem cells on treatment of primary lower extremity lymphedema. J Vasc Surg Venous Lymphat Disord, 2020, 8(3): 445-451.
- 56. Rochlin DH, Inchauste S, Zelones J, et al. The role of adjunct nanofibrillar collagen scaffold implantation in the surgical management of secondary lymphedema: Review of the literature and summary of initial pilot studies. J Surg Oncol, 2020, 121(1): 121-128.
- 57. Hadamitzky C, Zaitseva TS, Bazalova-Carter M, et al. Aligned nanofibrillar collagen scaffolds-guiding lymphangiogenesis for treatment of acquired lymphedema. Biomaterials, 2016, 102: 259-267.
- 58. Nguyen D, Zaitseva TS, Zhou A, et al. Lymphatic regeneration after implantation of aligned nanofibrillar collagen scaffolds: Preliminary preclinical and clinical results. J Surg Oncol, 2022, 125(2): 113-122.
- 59. Jia W, He W, Wang G, et al. Enhancement of lymphangiogenesis by human mesenchymal stem cell sheet. Adv Healthc Mater, 2022, 11(16): e2200464.
- 60. Kang HJ, Moon SY, Kim BK, et al. Recellularized lymph node scaffolds with human adipose-derived stem cells enhance lymph node regeneration to improve lymphedema. Sci Rep, 2023, 13(1): 5397.
- 61. Lu JH, Hsia K, Su CK, et al. A novel dressing composed of adipose stem cells and decellularized Wharton’s jelly facilitated wound healing and relieved lymphedema by enhancing angiogenesis and lymphangiogenesis in a rat model. J Funct Biomater, 2023, 14(2): 104.