- 1. Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China;
- 2. Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China;
- 3. Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China;
Citation: CHEN Guohui, LI Yaxing, ZHANG Hui, XIE Huiqi. Role of Piezo mechanosensitive ion channels in the osteoarticular system. Chinese Journal of Reparative and Reconstructive Surgery, 2024, 38(2): 240-248. doi: 10.7507/1002-1892.202310092 Copy
1. | Murthy SE, Dubin AE, Patapoutian A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat Rev Mol Cell Biol, 2017, 18(12): 771-783. |
2. | Klein-Nulend J, Bacabac RG, Veldhuijzen JP, et al. Microgravity and bone cell mechanosensitivity. Adv Space Res, 2003, 32(8): 1551-1559. |
3. | Romani P, Valcarcel-Jimenez L, Frezza C, et al. Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol, 2021, 22(1): 22-38. |
4. | Ostrow LW, Sachs F. Mechanosensation and endothelin in astrocytes—hypothetical roles in CNS pathophysiology. Brain Res Brain Res Rev, 2005, 48(3): 488-508. |
5. | Duscher D, Maan ZN, Wong VW, et al. Mechanotransduction and fibrosis. J Biomech, 2014, 47(9): 1997-2005. |
6. | Lyon RC, Zanella F, Omens JH, et al. Mechanotransduction in cardiac hypertrophy and failure. Circ Res, 2015, 116(8): 1462-1476. |
7. | Broders-Bondon F, Nguyen Ho-Bouldoires TH, Fernandez-Sanchez ME, et al. Mechanotransduction in tumor progression: The dark side of the force. J Cell Biol, 2018, 217(5): 1571-1587. |
8. | Vollrath MA, Kwan KY, Corey DP. The micromachinery of mechanotransduction in hair cells. Annu Rev Neurosci, 2007, 30: 339-365. |
9. | Qin L, He T, Chen S, et al. Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. Bone Res, 2021, 9(1): 44. |
10. | Herrmann M, Engelke K, Ebert R, et al. Interactions between muscle and bone-where physics meets biology. Biomolecules, 2020, 10(3): 432. |
11. | Scott A, Khan KM, Duronio V, et al. Mechanotransduction in human bone: in vitro cellular physiology that underpins bone changes with exercise. Sports Med, 2008, 38(2): 139-160. |
12. | Xu X, Liu S, Liu H, et al. Piezo channels: awesome mechanosensitive structures in cellular mechanotransduction and their role in bone. Int J Mol Sci, 2021, 22(12): 6429. |
13. | Wolff J. The law of bone remodelling. Berlin: Springer-Verlag, 1986: 3-21. |
14. | Wolff J. Das gesetz der transformation der knochen. Deutsche Medizinische Wochenschrift, 1893, 19: 1222-1224. |
15. | Pearson OM, Lieberman DE. The aging of Wolff’s “law”: ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol, 2004, Suppl 39: 63-99. |
16. | Lee TC, Taylor D. Bone remodelling: should we cry Wolff? Ir J Med Sci, 1999, 168(2): 102-105. |
17. | Mullender MG, Huiskes R. Proposal for the regulatory mechanism of Wolff's law. J Orthop Res, 1995, 13(4): 503-512. |
18. | Barak MM, Lieberman DE, Hublin JJ. A Wolff in sheep’s clothing: trabecular bone adaptation in response to changes in joint loading orientation. Bone, 2011, 49(6): 1141-1151. |
19. | Johnson KA. Wolff’s law continues to inspire orthopaedic research. Vet Comp Orthop Traumatol, 2014, 27(1): Ⅴ-Ⅵ. |
20. | Ilizarov GA. Clinical application of the tension-stress effect for limb lengthening. Clin Orthop Relat Res, 1990, (250): 8-26. |
21. | Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Part Ⅱ. The influence of the rate and frequency of distraction. Clin Orthop Relat Res, 1989, (239): 263-285. |
22. | Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part Ⅰ. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res, 1989, (238): 249-281. |
23. | Xu BY, Jin Y, Ma XH, et al. The potential role of mechanically sensitive ion channels in the physiology, injury, and repair of articular cartilage. J Orthop Surg (Hong Kong), 2020, 28(3): 2309499020950262. |
24. | Lee W, Nims RJ, Savadipour A, et al. Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis. Proc Natl Acad Sci U S A, 2021, 118(13): e2001611118. |
25. | Li XF, Zhang Z, Chen ZK, et al. Piezo1 protein induces the apoptosis of human osteoarthritis-derived chondrocytes by activating caspase-12, the signaling marker of ER stress. Int J Mol Med, 2017, 40(3): 845-853. |
26. | Sun Y, Leng P, Guo P, et al. G protein coupled estrogen receptor attenuates mechanical stress-mediated apoptosis of chondrocyte in osteoarthritis via suppression of Piezo1. Mol Med, 2021, 27(1): 96. |
27. | Cappellesso R, Nicole L, Guido A, et al. Spaceflight osteoporosis: current state and future perspective. Endocr Regul, 2015, 49(4): 231-239. |
28. | DeFrate LE, Kim-Wang SY, Englander ZA, et al. Osteoarthritis year in review 2018: mechanics. Osteoarthritis Cartilage, 2019, 27(3): 392-400. |
29. | Wang L, You X, Lotinun S, et al. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat Commun, 2020, 11(1): 282. |
30. | Ranade SS, Syeda R, Patapoutian A. Mechanically activated ion channels. Neuron, 2015, 87(6): 1162-1179. |
31. | Martinac B, Poole K. Mechanically activated ion channels. Int J Biochem Cell Biol, 2018, 97: 104-107. |
32. | Arnadottir J, Chalfie M. Eukaryotic mechanosensitive channels. Annu Rev Biophys, 2010, 39: 111-1137. |
33. | Coste B, Mathur J, Schmidt M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science, 2010, 330(6000): 55-60. |
34. | Faucherre A, Nargeot J, Mangoni ME, et al. Piezo2b regulates vertebrate light touch response. J Neurosci, 2013, 33(43): 17089-17094. |
35. | Hendrickx G, Fischer V, Liedert A, et al. Piezo1 inactivation in chondrocytes impairs trabecular bone formation. J Bone Miner Res, 2021, 36(2): 369-384. |
36. | Schneider ER, Anderson EO, Mastrotto M, et al. Molecular basis of tactile specialization in the duck bill. Proc Natl Acad Sci U S A, 2017, 114(49): 13036-13041. |
37. | Jiang Y, Guan Y, Lan Y, et al. Mechanosensitive Piezo1 in periodontal ligament cells promotes alveolar bone remodeling during orthodontic tooth movement. Front Physiol, 2021, 12: 767136. |
38. | Kim SE, Coste B, Chadha A, et al. The role of Drosophila Piezo in mechanical nociception. Nature, 2012, 483(7388): 209-212. |
39. | Song Y, Li D, Farrelly O, et al. The mechanosensitive ion channel Piezo inhibits axon regeneration. Neuron, 2019, 102(2): 373-389. |
40. | Wang P, Jia Y, Liu T, et al. Visceral mechano-sensing neurons control drosophila feeding by using Piezo as a sensor. Neuron, 2020, 108(4): 640-650. |
41. | Zhang Z, Tong X, Liu SY, et al. Genetic analysis of a Piezo-like protein suppressing systemic movement of plant viruses in Arabidopsis thaliana. Sci Rep, 2019, 9(1): 3187. |
42. | Fang X, Liu B, Shao Q, et al. AtPiezo plays an important role in root cap mechanotransduction. Int J Mol Sci, 2021, 22(1): 467. |
43. | Mousavi SAR, Dubin AE, Zeng WZ, et al. PIEZO ion channel is required for root mechanotransduction in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 2021, 118(20): e2102188118. |
44. | Song J, Liu L, Lv L, et al. Fluid shear stress induces Runx-2 expression via upregulation of PIEZO1 in MC3T3-E1 cells. Cell Biol Int, 2020, 44(7): 1491-1502. |
45. | Bai WY, Wang L, Ying ZM, et al. Identification of PIEZO1 polymorphisms for human bone mineral density. Bone, 2020, 133: 115247. doi: 10.1016/j.bone.2020.115247. |
46. | Sugimoto A, Miyazaki A, Kawarabayashi K, et al. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells. Sci Rep, 2017, 7(1): 17696. |
47. | Sun W, Chi S, Li Y, et al. The mechanosensitive Piezo1 channel is required for bone formation. Elife, 2019, 8: e47454. |
48. | Ge J, Li W, Zhao Q, et al. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature, 2015, 527(7576): 64-69. |
49. | Wang L, Zhou H, Zhang M, et al. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature, 2019, 573(7773): 225-229. |
50. | Zhao Q, Zhou H, Chi S, et al. Structure and mechanogating mechanism of the Piezo1 channel. Nature, 2018, 554(7693): 487-492. |
51. | Jiang Y, Yang X, Jiang J, et al. Structural designs and mechanogating mechanisms of the mechanosensitive Piezo channels. Trends Biochem Sci, 2021, 46(6): 472-488. |
52. | Geng J, Liu W, Zhou H, et al. A plug-and-latch mechanism for gating the mechanosensitive Piezo channel. Neuron, 2020, 106(3): 438-451. |
53. | Sugisawa E, Takayama Y, Takemura N, et al. RNA sensing by gut Piezo1 is essential for systemic serotonin synthesis. Cell, 2020, 182(3): 609-624. |
54. | Lee W, Leddy HA, Chen Y, et al. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc Natl Acad Sci U S A, 2014, 111(47): E5114-E5122. |
55. | Yang Q, Zhou Y, Wang J, et al. Study on the mechanism of excessive apoptosis of nucleus pulposus cells induced by shRNA-Piezo1 under abnormal mechanical stretch stress. J Cell Biochem, 2019, 120(3): 3989-3997. |
56. | Sun Y, Leng P, Song M, et al. Piezo1 activates the NLRP3 inflammasome in nucleus pulposus cell-mediated by Ca2+/NF-κB pathway. Int Immunopharmacol, 2020, 85: 106681. |
57. | Perin M, Chinigò G, Genova T, et al. The impact of plasma membrane ion channels on bone remodeling in response to mechanical stress, Oxidative imbalance, and acidosis. Antioxidants (Basel), 2023, 12(3): 689. |
58. | Friedenstein AJ, Chailakhyan RK, Latsinik NV, et al. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation, 1974, 17(4): 331-340. |
59. | Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143-147. |
60. | Chen Q, Shou P, Zheng C, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ, 2016, 23(7): 1128-1139. |
61. | Zhang B, Luo Q, Chen Z, et al. Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells. Stem Cell Res, 2015, 14(2): 155-164. |
62. | Park JS, Chu JS, Cheng C, et al. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng, 2004, 88(3): 359-368. |
63. | Song G, Ju Y, Soyama H, et al. Regulation of cyclic longitudinal mechanical stretch on proliferation of human bone marrow mesenchymal stem cells. Mol Cell Biomech, 2007, 4(4): 201-210. |
64. | Jia X, Su H, Chen X, et al. A critical role of the KCa 3.1 channel in mechanical stretch-induced proliferation of rat bone marrow-derived mesenchymal stem cells. J Cell Mol Med, 2020, 24(6): 3739-3744. |
65. | Sugimoto A, Iwata K, Kurogoushi R, et al. C-terminus of PIEZO1 governs Ca2+ influx and intracellular ERK1/2 signaling pathway in mechanotransduction. Biochem Biophys Res Commun, 2023, 682: 39-45. |
66. | Mauney JR, Sjostorm S, Blumberg J, et al. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int, 2004, 74(5): 458-468. |
67. | Yourek G, McCormick SM, Mao JJ, et al. Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen Med, 2010, 5(5): 713-724. |
68. | Friedl G, Schmidt H, Rehak I, et al. Undifferentiated human mesenchymal stem cells (hMSCs) are highly sensitive to mechanical strain: transcriptionally controlled early osteo-chondrogenic response in vitro. Osteoarthritis Cartilage, 2007, 15(11): 1293-1300. |
69. | Wu T, Yin F, Wang N, et al. Involvement of mechanosensitive ion channels in the effects of mechanical stretch induces osteogenic differentiation in mouse bone marrow mesenchymal stem cells. J Cell Physiol, 2021, 236(1): 284-293. |
70. | Zhou T, Gao B, Fan Y, et al. Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-β-catenin. Elife, 2020, 9: e52779. |
71. | Vico L, Collet P, Guignandon A, et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet, 2000, 355(9215): 1607-1611. |
72. | Vico L, Hargens A. Skeletal changes during and after spaceflight. Nat Rev Rheumatol, 2018, 14(4): 229-245. |
73. | Nicogossian A. Medicine and space exploration. Lancet, 2003, 362 Suppl: S8-S9. |
74. | Indran IR, Liang RL, Min TE, et al. Preclinical studies and clinical evaluation of compounds from the genus epimedium for osteoporosis and bone health. Pharmacol Ther, 2016, 162: 188-205. |
75. | Yoon JY, Baek CW, Kim HJ, et al. Remifentanil negatively regulates rankl-induced osteoclast differentiation and bone resorption by inhibiting c-Fos/NFATc1 expression. Tissue Eng Regen Med, 2018, 15(3): 333-340. |
76. | Robling AG, Turner CH. Mechanical signaling for bone modeling and remodeling. Crit Rev Eukaryot Gene Expr, 2009, 19(4): 319-338. |
77. | Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng, 2006, 8: 455-498. |
78. | Morey ER, Baylink DJ. Inhibition of bone formation during space flight. Science, 1978, 201(4361): 1138-1141. |
79. | Duncan RL, Hruska KA. Chronic, intermittent loading alters mechanosensitive channel characteristics in osteoblast-like cells. Am J Physiol, 1994, 267(6 Pt 2): F909-F916. |
80. | Davidson RM, Lingenbrink PA, Norton LA. Continuous mechanical loading alters properties of mechanosensitive channels in G292 osteoblastic cells. Calcif Tissue Int, 1996, 59(6): 500-504. |
81. | Pei F, Liu J, Zhang L, et al. The functions of mechanosensitive ion channels in tooth and bone tissues. Cell Signal, 2021, 78: 109877. |
82. | Yoneda M, Suzuki H, Hatano N, et al. PIEZO1 and TRPV4, which are distinct mechano-sensors in the osteoblastic MC3T3-E1 cells, modify cell-proliferation. Int J Mol Sci, 2019, 20(19): 4960. |
83. | Zhang G, Li X, Wu L, et al. Piezo1 channel activation in response to mechanobiological acoustic radiation force in osteoblastic cells. Bone Res, 2021, 9(1): 16. |
84. | Suda T, Takahashi N. Contributions to osteoclast biology from Japan. Proc Jpn Acad Ser B Phys Biol Sci, 2008, 84(10): 419-438. |
85. | Back SH, Adapala NS, Barbe MF, et al. TULA-2, a novel histidine phosphatase, regulates bone remodeling by modulating osteoclast function. Cell Mol Life Sci, 2013, 70(7): 1269-1284. |
86. | Kim JM, Lin C, Stavre Z, et al. Osteoblast-osteoclast communication and bone homeostasis. Cells, 2020, 9(9): 2073. |
87. | Nie X, Chung MK. Piezo channels for skeletal development and homeostasis: Insights from mouse genetic models. Differentiation, 2022, 126: 10-15. |
88. | Jin Y, Li J, Wang Y, et al. Functional role of mechanosensitive ion channel Piezo1 in human periodontal ligament cells. Angle Orthod, 2015, 85(1): 87-94. |
89. | Chen Y, Braun BJ, Menger MM, et al. Intermittent exposure to a 16 Hz extremely low frequency pulsed electromagnetic field promotes osteogenesis in vitro through activating Piezo 1-induced Ca2+ influx in osteoprogenitor cells. J Funct Biomater, 2023, 14(3): 165. |
90. | Bonewald LF. The amazing osteocyte. J Bone Miner Res, 2011, 26(2): 229-238. |
91. | Staines KA, Javaheri B, Hohenstein P, et al. Hypomorphic conditional deletion of E11/Podoplanin reveals a role in osteocyte dendrite elongation. J Cell Physiol, 2017, 232(11): 3006-3019. |
92. | Li X, Kordsmeier J, Xiong J. New advances in osteocyte mechanotransduction. Curr Osteoporos Rep, 2021, 19(1): 101-106. |
93. | Tatsumi S, Ishii K, Amizuka N, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab, 2007, 5(6): 464-475. |
94. | Calvi LM, Bromberg O, Rhee Y, et al. Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood, 2012, 119(11): 2489-2499. |
95. | Marotti G. The structure of bone tissues and the cellular control of their deposition. Ital J Anat Embryol, 1996, 101(4): 25-79. |
96. | Winkler DG, Sutherland MK, Geoghegan JC, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J, 2003, 22(23): 6267-6276. |
97. | Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone, 2017, 96: 29-37. |
98. | Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med, 2013, 19(2): 179-192. |
99. | Delgado-Calle J, Bellido T. New insights into the local and systemic functions of sclerostin: regulation of quiescent bone lining cells and beige adipogenesis in peripheral fat depots. J Bone Miner Res, 2017, 32(5): 889-891. |
100. | Ohori F, Kitaura H, Marahleh A, et al. Effect of TNF-α-induced sclerostin on osteocytes during orthodontic tooth movement. J Immunol Res, 2019, 2019: 9716758. |
101. | Sasaki F, Hayashi M, Mouri Y, et al. Mechanotransduction via the Piezo1-Akt pathway underlies Sost suppression in osteocytes. Biochem Biophys Res Commun, 2020, 521(3): 806-813. |
102. | Li X, Han L, Nookaew I, et al. Stimulation of Piezo1 by mechanical signals promotes bone anabolism. Elife, 2019, 8: e49631. |
103. | Lotz M, Loeser RF. Effects of aging on articular cartilage homeostasis. Bone, 2012, 51(2): 241-248. |
104. | Loeser RF. Osteoarthritis year in review 2013: biology. Osteoarthritis Cartilage, 2013, 21(10): 1436-1442. |
105. | Deng Y, Lu J, Li W, et al. Reciprocal inhibition of YAP/TAZ and NF-κB regulates osteoarthritic cartilage degradation. Nat Commun, 2018, 9(1): 4564. |
106. | Tanaka E, Detamore MS, Mercuri LG. Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment. J Dent Res, 2008, 87(4): 296-307. |
107. | Li H, Zhang XY, Wu TJ, et al. Endoplasmic reticulum stress regulates rat mandibular cartilage thinning under compressive mechanical stress. J Biol Chem, 2013, 288(25): 18172-18183. |
108. | Du J, Jiang Q, Mei L, et al. Effect of high fat diet and excessive compressive mechanical force on pathologic changes of temporomandibular joint. Sci Rep, 2020, 10(1): 17457. |
109. | Li H, Yang HS, Wu TJ, et al. Proteomic analysis of early-response to mechanical stress in neonatal rat mandibular condylar chondrocytes. J Cell Physiol, 2010, 223(3): 610-622. |
110. | Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum, 2012, 64(6): 1697-1707. |
111. | Sun HB. Mechanical loading, cartilage degradation, and arthritis. Ann N Y Acad Sci, 2010, 1211: 37-50. |
112. | Ettinger WH Jr, Burns R, Messier SP, et al. A randomized trial comparing aerobic exercise and resistance exercise with a health education program in older adults with knee osteoarthritis. The Fitness Arthritis and Seniors Trial (FAST). JAMA, 1997, 277(1): 25-31. |
113. | Larsson T, Aspden RM, Heinegård D. Effects of mechanical load on cartilage matrix biosynthesis in vitro. Matrix, 1991, 11(6): 388-394. |
114. | Guilak F. Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol, 2011, 25(6): 815-823. |
115. | Sah RL, Kim YJ, Doong JY, et al. Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res, 1989, 7(5): 619-636. |
116. | Buschmann MD, Gluzband YA, Grodzinsky AJ, et al. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci, 1995, 108 (Pt 4): 1497-508. |
117. | Ewers BJ, Dvoracek-Driksna D, Orth MW, et al. The extent of matrix damage and chondrocyte death in mechanically traumatized articular cartilage explants depends on rate of loading. J Orthop Res, 2001, 19(5): 779-784. |
118. | Milentijevic D, Torzilli PA. Influence of stress rate on water loss, matrix deformation and chondrocyte viability in impacted articular cartilage. J Biomech, 2005, 38(3): 493-502. |
119. | Paranjape CS, Cutcliffe HC, Grambow SC, et al. A new stress test for knee joint cartilage. Sci Rep, 2019, 9(1): 2283. |
120. | Du G, Li L, Zhang X, et al. Roles of TRPV4 and piezo channels in stretch-evoked Ca2+ response in chondrocytes. Exp Biol Med (Maywood), 2020, 245(3): 180-189. |
121. | Du G, Chen W, Li L, et al. The potential role of mechanosensitive ion channels in substrate stiffness-regulated Ca2+ response in chondrocytes. Connect Tissue Res, 2022, 63(5): 453-462. |
- 1. Murthy SE, Dubin AE, Patapoutian A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat Rev Mol Cell Biol, 2017, 18(12): 771-783.
- 2. Klein-Nulend J, Bacabac RG, Veldhuijzen JP, et al. Microgravity and bone cell mechanosensitivity. Adv Space Res, 2003, 32(8): 1551-1559.
- 3. Romani P, Valcarcel-Jimenez L, Frezza C, et al. Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol, 2021, 22(1): 22-38.
- 4. Ostrow LW, Sachs F. Mechanosensation and endothelin in astrocytes—hypothetical roles in CNS pathophysiology. Brain Res Brain Res Rev, 2005, 48(3): 488-508.
- 5. Duscher D, Maan ZN, Wong VW, et al. Mechanotransduction and fibrosis. J Biomech, 2014, 47(9): 1997-2005.
- 6. Lyon RC, Zanella F, Omens JH, et al. Mechanotransduction in cardiac hypertrophy and failure. Circ Res, 2015, 116(8): 1462-1476.
- 7. Broders-Bondon F, Nguyen Ho-Bouldoires TH, Fernandez-Sanchez ME, et al. Mechanotransduction in tumor progression: The dark side of the force. J Cell Biol, 2018, 217(5): 1571-1587.
- 8. Vollrath MA, Kwan KY, Corey DP. The micromachinery of mechanotransduction in hair cells. Annu Rev Neurosci, 2007, 30: 339-365.
- 9. Qin L, He T, Chen S, et al. Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. Bone Res, 2021, 9(1): 44.
- 10. Herrmann M, Engelke K, Ebert R, et al. Interactions between muscle and bone-where physics meets biology. Biomolecules, 2020, 10(3): 432.
- 11. Scott A, Khan KM, Duronio V, et al. Mechanotransduction in human bone: in vitro cellular physiology that underpins bone changes with exercise. Sports Med, 2008, 38(2): 139-160.
- 12. Xu X, Liu S, Liu H, et al. Piezo channels: awesome mechanosensitive structures in cellular mechanotransduction and their role in bone. Int J Mol Sci, 2021, 22(12): 6429.
- 13. Wolff J. The law of bone remodelling. Berlin: Springer-Verlag, 1986: 3-21.
- 14. Wolff J. Das gesetz der transformation der knochen. Deutsche Medizinische Wochenschrift, 1893, 19: 1222-1224.
- 15. Pearson OM, Lieberman DE. The aging of Wolff’s “law”: ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol, 2004, Suppl 39: 63-99.
- 16. Lee TC, Taylor D. Bone remodelling: should we cry Wolff? Ir J Med Sci, 1999, 168(2): 102-105.
- 17. Mullender MG, Huiskes R. Proposal for the regulatory mechanism of Wolff's law. J Orthop Res, 1995, 13(4): 503-512.
- 18. Barak MM, Lieberman DE, Hublin JJ. A Wolff in sheep’s clothing: trabecular bone adaptation in response to changes in joint loading orientation. Bone, 2011, 49(6): 1141-1151.
- 19. Johnson KA. Wolff’s law continues to inspire orthopaedic research. Vet Comp Orthop Traumatol, 2014, 27(1): Ⅴ-Ⅵ.
- 20. Ilizarov GA. Clinical application of the tension-stress effect for limb lengthening. Clin Orthop Relat Res, 1990, (250): 8-26.
- 21. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Part Ⅱ. The influence of the rate and frequency of distraction. Clin Orthop Relat Res, 1989, (239): 263-285.
- 22. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part Ⅰ. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res, 1989, (238): 249-281.
- 23. Xu BY, Jin Y, Ma XH, et al. The potential role of mechanically sensitive ion channels in the physiology, injury, and repair of articular cartilage. J Orthop Surg (Hong Kong), 2020, 28(3): 2309499020950262.
- 24. Lee W, Nims RJ, Savadipour A, et al. Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis. Proc Natl Acad Sci U S A, 2021, 118(13): e2001611118.
- 25. Li XF, Zhang Z, Chen ZK, et al. Piezo1 protein induces the apoptosis of human osteoarthritis-derived chondrocytes by activating caspase-12, the signaling marker of ER stress. Int J Mol Med, 2017, 40(3): 845-853.
- 26. Sun Y, Leng P, Guo P, et al. G protein coupled estrogen receptor attenuates mechanical stress-mediated apoptosis of chondrocyte in osteoarthritis via suppression of Piezo1. Mol Med, 2021, 27(1): 96.
- 27. Cappellesso R, Nicole L, Guido A, et al. Spaceflight osteoporosis: current state and future perspective. Endocr Regul, 2015, 49(4): 231-239.
- 28. DeFrate LE, Kim-Wang SY, Englander ZA, et al. Osteoarthritis year in review 2018: mechanics. Osteoarthritis Cartilage, 2019, 27(3): 392-400.
- 29. Wang L, You X, Lotinun S, et al. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat Commun, 2020, 11(1): 282.
- 30. Ranade SS, Syeda R, Patapoutian A. Mechanically activated ion channels. Neuron, 2015, 87(6): 1162-1179.
- 31. Martinac B, Poole K. Mechanically activated ion channels. Int J Biochem Cell Biol, 2018, 97: 104-107.
- 32. Arnadottir J, Chalfie M. Eukaryotic mechanosensitive channels. Annu Rev Biophys, 2010, 39: 111-1137.
- 33. Coste B, Mathur J, Schmidt M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science, 2010, 330(6000): 55-60.
- 34. Faucherre A, Nargeot J, Mangoni ME, et al. Piezo2b regulates vertebrate light touch response. J Neurosci, 2013, 33(43): 17089-17094.
- 35. Hendrickx G, Fischer V, Liedert A, et al. Piezo1 inactivation in chondrocytes impairs trabecular bone formation. J Bone Miner Res, 2021, 36(2): 369-384.
- 36. Schneider ER, Anderson EO, Mastrotto M, et al. Molecular basis of tactile specialization in the duck bill. Proc Natl Acad Sci U S A, 2017, 114(49): 13036-13041.
- 37. Jiang Y, Guan Y, Lan Y, et al. Mechanosensitive Piezo1 in periodontal ligament cells promotes alveolar bone remodeling during orthodontic tooth movement. Front Physiol, 2021, 12: 767136.
- 38. Kim SE, Coste B, Chadha A, et al. The role of Drosophila Piezo in mechanical nociception. Nature, 2012, 483(7388): 209-212.
- 39. Song Y, Li D, Farrelly O, et al. The mechanosensitive ion channel Piezo inhibits axon regeneration. Neuron, 2019, 102(2): 373-389.
- 40. Wang P, Jia Y, Liu T, et al. Visceral mechano-sensing neurons control drosophila feeding by using Piezo as a sensor. Neuron, 2020, 108(4): 640-650.
- 41. Zhang Z, Tong X, Liu SY, et al. Genetic analysis of a Piezo-like protein suppressing systemic movement of plant viruses in Arabidopsis thaliana. Sci Rep, 2019, 9(1): 3187.
- 42. Fang X, Liu B, Shao Q, et al. AtPiezo plays an important role in root cap mechanotransduction. Int J Mol Sci, 2021, 22(1): 467.
- 43. Mousavi SAR, Dubin AE, Zeng WZ, et al. PIEZO ion channel is required for root mechanotransduction in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 2021, 118(20): e2102188118.
- 44. Song J, Liu L, Lv L, et al. Fluid shear stress induces Runx-2 expression via upregulation of PIEZO1 in MC3T3-E1 cells. Cell Biol Int, 2020, 44(7): 1491-1502.
- 45. Bai WY, Wang L, Ying ZM, et al. Identification of PIEZO1 polymorphisms for human bone mineral density. Bone, 2020, 133: 115247. doi: 10.1016/j.bone.2020.115247.
- 46. Sugimoto A, Miyazaki A, Kawarabayashi K, et al. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells. Sci Rep, 2017, 7(1): 17696.
- 47. Sun W, Chi S, Li Y, et al. The mechanosensitive Piezo1 channel is required for bone formation. Elife, 2019, 8: e47454.
- 48. Ge J, Li W, Zhao Q, et al. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature, 2015, 527(7576): 64-69.
- 49. Wang L, Zhou H, Zhang M, et al. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature, 2019, 573(7773): 225-229.
- 50. Zhao Q, Zhou H, Chi S, et al. Structure and mechanogating mechanism of the Piezo1 channel. Nature, 2018, 554(7693): 487-492.
- 51. Jiang Y, Yang X, Jiang J, et al. Structural designs and mechanogating mechanisms of the mechanosensitive Piezo channels. Trends Biochem Sci, 2021, 46(6): 472-488.
- 52. Geng J, Liu W, Zhou H, et al. A plug-and-latch mechanism for gating the mechanosensitive Piezo channel. Neuron, 2020, 106(3): 438-451.
- 53. Sugisawa E, Takayama Y, Takemura N, et al. RNA sensing by gut Piezo1 is essential for systemic serotonin synthesis. Cell, 2020, 182(3): 609-624.
- 54. Lee W, Leddy HA, Chen Y, et al. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc Natl Acad Sci U S A, 2014, 111(47): E5114-E5122.
- 55. Yang Q, Zhou Y, Wang J, et al. Study on the mechanism of excessive apoptosis of nucleus pulposus cells induced by shRNA-Piezo1 under abnormal mechanical stretch stress. J Cell Biochem, 2019, 120(3): 3989-3997.
- 56. Sun Y, Leng P, Song M, et al. Piezo1 activates the NLRP3 inflammasome in nucleus pulposus cell-mediated by Ca2+/NF-κB pathway. Int Immunopharmacol, 2020, 85: 106681.
- 57. Perin M, Chinigò G, Genova T, et al. The impact of plasma membrane ion channels on bone remodeling in response to mechanical stress, Oxidative imbalance, and acidosis. Antioxidants (Basel), 2023, 12(3): 689.
- 58. Friedenstein AJ, Chailakhyan RK, Latsinik NV, et al. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation, 1974, 17(4): 331-340.
- 59. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143-147.
- 60. Chen Q, Shou P, Zheng C, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ, 2016, 23(7): 1128-1139.
- 61. Zhang B, Luo Q, Chen Z, et al. Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells. Stem Cell Res, 2015, 14(2): 155-164.
- 62. Park JS, Chu JS, Cheng C, et al. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng, 2004, 88(3): 359-368.
- 63. Song G, Ju Y, Soyama H, et al. Regulation of cyclic longitudinal mechanical stretch on proliferation of human bone marrow mesenchymal stem cells. Mol Cell Biomech, 2007, 4(4): 201-210.
- 64. Jia X, Su H, Chen X, et al. A critical role of the KCa 3.1 channel in mechanical stretch-induced proliferation of rat bone marrow-derived mesenchymal stem cells. J Cell Mol Med, 2020, 24(6): 3739-3744.
- 65. Sugimoto A, Iwata K, Kurogoushi R, et al. C-terminus of PIEZO1 governs Ca2+ influx and intracellular ERK1/2 signaling pathway in mechanotransduction. Biochem Biophys Res Commun, 2023, 682: 39-45.
- 66. Mauney JR, Sjostorm S, Blumberg J, et al. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int, 2004, 74(5): 458-468.
- 67. Yourek G, McCormick SM, Mao JJ, et al. Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen Med, 2010, 5(5): 713-724.
- 68. Friedl G, Schmidt H, Rehak I, et al. Undifferentiated human mesenchymal stem cells (hMSCs) are highly sensitive to mechanical strain: transcriptionally controlled early osteo-chondrogenic response in vitro. Osteoarthritis Cartilage, 2007, 15(11): 1293-1300.
- 69. Wu T, Yin F, Wang N, et al. Involvement of mechanosensitive ion channels in the effects of mechanical stretch induces osteogenic differentiation in mouse bone marrow mesenchymal stem cells. J Cell Physiol, 2021, 236(1): 284-293.
- 70. Zhou T, Gao B, Fan Y, et al. Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-β-catenin. Elife, 2020, 9: e52779.
- 71. Vico L, Collet P, Guignandon A, et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet, 2000, 355(9215): 1607-1611.
- 72. Vico L, Hargens A. Skeletal changes during and after spaceflight. Nat Rev Rheumatol, 2018, 14(4): 229-245.
- 73. Nicogossian A. Medicine and space exploration. Lancet, 2003, 362 Suppl: S8-S9.
- 74. Indran IR, Liang RL, Min TE, et al. Preclinical studies and clinical evaluation of compounds from the genus epimedium for osteoporosis and bone health. Pharmacol Ther, 2016, 162: 188-205.
- 75. Yoon JY, Baek CW, Kim HJ, et al. Remifentanil negatively regulates rankl-induced osteoclast differentiation and bone resorption by inhibiting c-Fos/NFATc1 expression. Tissue Eng Regen Med, 2018, 15(3): 333-340.
- 76. Robling AG, Turner CH. Mechanical signaling for bone modeling and remodeling. Crit Rev Eukaryot Gene Expr, 2009, 19(4): 319-338.
- 77. Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng, 2006, 8: 455-498.
- 78. Morey ER, Baylink DJ. Inhibition of bone formation during space flight. Science, 1978, 201(4361): 1138-1141.
- 79. Duncan RL, Hruska KA. Chronic, intermittent loading alters mechanosensitive channel characteristics in osteoblast-like cells. Am J Physiol, 1994, 267(6 Pt 2): F909-F916.
- 80. Davidson RM, Lingenbrink PA, Norton LA. Continuous mechanical loading alters properties of mechanosensitive channels in G292 osteoblastic cells. Calcif Tissue Int, 1996, 59(6): 500-504.
- 81. Pei F, Liu J, Zhang L, et al. The functions of mechanosensitive ion channels in tooth and bone tissues. Cell Signal, 2021, 78: 109877.
- 82. Yoneda M, Suzuki H, Hatano N, et al. PIEZO1 and TRPV4, which are distinct mechano-sensors in the osteoblastic MC3T3-E1 cells, modify cell-proliferation. Int J Mol Sci, 2019, 20(19): 4960.
- 83. Zhang G, Li X, Wu L, et al. Piezo1 channel activation in response to mechanobiological acoustic radiation force in osteoblastic cells. Bone Res, 2021, 9(1): 16.
- 84. Suda T, Takahashi N. Contributions to osteoclast biology from Japan. Proc Jpn Acad Ser B Phys Biol Sci, 2008, 84(10): 419-438.
- 85. Back SH, Adapala NS, Barbe MF, et al. TULA-2, a novel histidine phosphatase, regulates bone remodeling by modulating osteoclast function. Cell Mol Life Sci, 2013, 70(7): 1269-1284.
- 86. Kim JM, Lin C, Stavre Z, et al. Osteoblast-osteoclast communication and bone homeostasis. Cells, 2020, 9(9): 2073.
- 87. Nie X, Chung MK. Piezo channels for skeletal development and homeostasis: Insights from mouse genetic models. Differentiation, 2022, 126: 10-15.
- 88. Jin Y, Li J, Wang Y, et al. Functional role of mechanosensitive ion channel Piezo1 in human periodontal ligament cells. Angle Orthod, 2015, 85(1): 87-94.
- 89. Chen Y, Braun BJ, Menger MM, et al. Intermittent exposure to a 16 Hz extremely low frequency pulsed electromagnetic field promotes osteogenesis in vitro through activating Piezo 1-induced Ca2+ influx in osteoprogenitor cells. J Funct Biomater, 2023, 14(3): 165.
- 90. Bonewald LF. The amazing osteocyte. J Bone Miner Res, 2011, 26(2): 229-238.
- 91. Staines KA, Javaheri B, Hohenstein P, et al. Hypomorphic conditional deletion of E11/Podoplanin reveals a role in osteocyte dendrite elongation. J Cell Physiol, 2017, 232(11): 3006-3019.
- 92. Li X, Kordsmeier J, Xiong J. New advances in osteocyte mechanotransduction. Curr Osteoporos Rep, 2021, 19(1): 101-106.
- 93. Tatsumi S, Ishii K, Amizuka N, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab, 2007, 5(6): 464-475.
- 94. Calvi LM, Bromberg O, Rhee Y, et al. Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood, 2012, 119(11): 2489-2499.
- 95. Marotti G. The structure of bone tissues and the cellular control of their deposition. Ital J Anat Embryol, 1996, 101(4): 25-79.
- 96. Winkler DG, Sutherland MK, Geoghegan JC, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J, 2003, 22(23): 6267-6276.
- 97. Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone, 2017, 96: 29-37.
- 98. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med, 2013, 19(2): 179-192.
- 99. Delgado-Calle J, Bellido T. New insights into the local and systemic functions of sclerostin: regulation of quiescent bone lining cells and beige adipogenesis in peripheral fat depots. J Bone Miner Res, 2017, 32(5): 889-891.
- 100. Ohori F, Kitaura H, Marahleh A, et al. Effect of TNF-α-induced sclerostin on osteocytes during orthodontic tooth movement. J Immunol Res, 2019, 2019: 9716758.
- 101. Sasaki F, Hayashi M, Mouri Y, et al. Mechanotransduction via the Piezo1-Akt pathway underlies Sost suppression in osteocytes. Biochem Biophys Res Commun, 2020, 521(3): 806-813.
- 102. Li X, Han L, Nookaew I, et al. Stimulation of Piezo1 by mechanical signals promotes bone anabolism. Elife, 2019, 8: e49631.
- 103. Lotz M, Loeser RF. Effects of aging on articular cartilage homeostasis. Bone, 2012, 51(2): 241-248.
- 104. Loeser RF. Osteoarthritis year in review 2013: biology. Osteoarthritis Cartilage, 2013, 21(10): 1436-1442.
- 105. Deng Y, Lu J, Li W, et al. Reciprocal inhibition of YAP/TAZ and NF-κB regulates osteoarthritic cartilage degradation. Nat Commun, 2018, 9(1): 4564.
- 106. Tanaka E, Detamore MS, Mercuri LG. Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment. J Dent Res, 2008, 87(4): 296-307.
- 107. Li H, Zhang XY, Wu TJ, et al. Endoplasmic reticulum stress regulates rat mandibular cartilage thinning under compressive mechanical stress. J Biol Chem, 2013, 288(25): 18172-18183.
- 108. Du J, Jiang Q, Mei L, et al. Effect of high fat diet and excessive compressive mechanical force on pathologic changes of temporomandibular joint. Sci Rep, 2020, 10(1): 17457.
- 109. Li H, Yang HS, Wu TJ, et al. Proteomic analysis of early-response to mechanical stress in neonatal rat mandibular condylar chondrocytes. J Cell Physiol, 2010, 223(3): 610-622.
- 110. Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum, 2012, 64(6): 1697-1707.
- 111. Sun HB. Mechanical loading, cartilage degradation, and arthritis. Ann N Y Acad Sci, 2010, 1211: 37-50.
- 112. Ettinger WH Jr, Burns R, Messier SP, et al. A randomized trial comparing aerobic exercise and resistance exercise with a health education program in older adults with knee osteoarthritis. The Fitness Arthritis and Seniors Trial (FAST). JAMA, 1997, 277(1): 25-31.
- 113. Larsson T, Aspden RM, Heinegård D. Effects of mechanical load on cartilage matrix biosynthesis in vitro. Matrix, 1991, 11(6): 388-394.
- 114. Guilak F. Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol, 2011, 25(6): 815-823.
- 115. Sah RL, Kim YJ, Doong JY, et al. Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res, 1989, 7(5): 619-636.
- 116. Buschmann MD, Gluzband YA, Grodzinsky AJ, et al. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci, 1995, 108 (Pt 4): 1497-508.
- 117. Ewers BJ, Dvoracek-Driksna D, Orth MW, et al. The extent of matrix damage and chondrocyte death in mechanically traumatized articular cartilage explants depends on rate of loading. J Orthop Res, 2001, 19(5): 779-784.
- 118. Milentijevic D, Torzilli PA. Influence of stress rate on water loss, matrix deformation and chondrocyte viability in impacted articular cartilage. J Biomech, 2005, 38(3): 493-502.
- 119. Paranjape CS, Cutcliffe HC, Grambow SC, et al. A new stress test for knee joint cartilage. Sci Rep, 2019, 9(1): 2283.
- 120. Du G, Li L, Zhang X, et al. Roles of TRPV4 and piezo channels in stretch-evoked Ca2+ response in chondrocytes. Exp Biol Med (Maywood), 2020, 245(3): 180-189.
- 121. Du G, Chen W, Li L, et al. The potential role of mechanosensitive ion channels in substrate stiffness-regulated Ca2+ response in chondrocytes. Connect Tissue Res, 2022, 63(5): 453-462.