1. |
Huang B, Yang M, Kou Y, et al. Absorbable implants in sport medicine and arthroscopic surgery: A narrative review of recent development. Bioact Mater, 2024, 31: 272-283.
|
2. |
乔玉成, 周威. 我国运动医学学科定位6个基本问题辨析. 体育学刊, 2020, 27(3): 136-144.
|
3. |
Aboutalebianaraki N, Zeblisky P, Sarker MD, et al. An osteogenic magnesium alloy with improved corrosion resistance, antibacterial, and mechanical properties for orthopedic applications. J Biomed Mater Res A, 2023, 111(4): 556-574.
|
4. |
Qi T, Weng J, Yu F, et al. Insights into the role of magnesium ions in affecting osteogenic differentiation of mesenchymal stem cells. Biol Trace Elem Res, 2021, 199(2): 559-567.
|
5. |
Bennett J, De Hemptinne Q, Mccutcheon K. Magmaris resorbable magnesium scaffold for the treatment of coronary heart disease: overview of its safety and efficacy. Expert Rev Med Devic, 2019, 16(9): 757-769.
|
6. |
Sun JH, Li ZP, Liu SW, et al. Biodegradable magnesium screw, titanium screw and direct embedding fixation in pedicled vascularized iliac bone graft transfer for osteonecrosis of the femoral head: a randomized controlled study. J Orthop Surg Res, 2023, 18(1): 523.
|
7. |
Apostolakos J, Durant TJ, Dwyer CR, et al. The enthesis: a review of the tendon-to-bone insertion. Muscles Ligaments Tendons J, 2014, 4(3): 333-342.
|
8. |
Zhang H, Ma Y, Wang Y, et al. Rational design of soft-hard interfaces through bioinspired engineering. Small, 2023, 19(1): e2204498.
|
9. |
Golman M, Abraham AC, Kurtaliaj I, et al. Toughening mechanisms for the attachment of architectured materials: The mechanics of the tendon enthesis. Sci Adv, 2021, 7(48): eabi5584.
|
10. |
Masi AT, Benjamin M, Vleeming A. CHAPTER 14-Anatomical, biomechanical, and clinical perspectives on sacroiliac joints: an integrative synthesis of biodynamic mechanisms related to ankylosing spondylitis//Vleeming A, Mooney V, Stoeckart R, et al. Movement, Stability & Lumbopelvic Pain. 2nd Ed. Edinburgh: Churchill Livingstone, 2007: 205-227.
|
11. |
Fang F, Sup M, Luzzi A, et al. Hedgehog signaling underlying tendon and enthesis development and pathology. Matrix Biol, 2022, 105: 87-103.
|
12. |
Vasiliadis AV, Katakalos K. The role of scaffolds in tendon tissue engineering. J Funct Biomater, 2020, 11(4): 78.
|
13. |
Luo Y, Zhang C, Wang J, et al. Clinical translation and challenges of biodegradable magnesium-based interference screws in ACL reconstruction. Bioact Mater, 2021, 6(10): 3231-3243.
|
14. |
Wang J, Xu J, Hopkins C, et al. Biodegradable magnesium-based implants in orthopedics—A general review and perspectives. Adv Sci, 2020, 7(8): 1902443.
|
15. |
Modrák M, Trebuňová M, Balogová AF, et al. Biodegradable materials for tissue engineering: development, classification and current applications. J Funct Biomater, 2023, 14(3): 159.
|
16. |
Senra MR, Marques MFV, Monteiro SN. Poly (ether-ether-ketone) for biomedical applications: from enhancing bioactivity to reinforced-bioactive composites-an overview. Polymers (Basel), 2023, 15(2): 373.
|
17. |
Pohanka M. D-lactic acid as a metabolite: toxicology, diagnosis, and detection. Biomed Res Int, 2020, 2020: 3419034.
|
18. |
Barber FA, Dockery WD. Biocomposite interference screws in anterior cruciate ligament reconstruction: osteoconductivity and degradation. Arthrosc Sports Med Rehabil, 2020, 2(2): e53-e58.
|
19. |
Galiveeti MRV, El-Abed K, Ahmad R. Early failure of primary total knee arthroplasty due to massive osteolysis caused by bio-absorbable interference screws. Cureus J Med Science, 2023, 15(4): e38143.
|
20. |
Zhao D, Witte F, Lu F, et al. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials, 2017, 112: 287-302.
|
21. |
Seetharaman S, Sankaranarayanan D, Gupta M. Magnesium-based temporary implants: Potential, current status, applications, and challenges. J Funct Biomater, 2023, 14(6): 324.
|
22. |
Sekar P, Narendranath S, Desai V. Recent progress in in vivo studies and clinical applications of magnesium based biodegradable implants—A review. J Magnes Alloy, 2021, 9(4): 1147-1163.
|
23. |
Azadani MN, Zahedi A, Bowoto OK, et al. A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog Biomater, 2022, 11(1): 1-26.
|
24. |
Zhao D, Huang S, Lu F, et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head. Biomaterials, 2016, 81: 84-92.
|
25. |
Huang S, Wang B, Zhang X, et al. High-purity weight-bearing magnesium screw: Translational application in the healing of femoral neck fracture. Biomaterials, 2020, 238: 119829.
|
26. |
Wang J, Xu J, Fu W, et al. Biodegradable magnesium screws accelerate fibrous tissue mineralization at the tendon-bone insertion in anterior cruciate ligament reconstruction model of rabbit. Sci Rep, 2017, 7: 40369.
|
27. |
Chen B, Liang Y, Bai L, et al. Sustained release of magnesium ions mediated by injectable self-healing adhesive hydrogel promotes fibrocartilaginous interface regeneration in the rabbit rotator cuff tear model. Chem Eng J, 2020, 396: 125335.
|
28. |
Cheng P, Han P, Zhao C, et al. High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF. Biomaterials, 2016, 81: 14-26.
|
29. |
Cheng P, Weng Z, Hamushan M, et al. High-purity magnesium screws modulate macrophage polarization during the tendon-bone healing process in the anterior cruciate ligament reconstruction rabbit model. Regen Biomater, 2022, 9: rbac067.
|
30. |
Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials, 2010, 3(7): 3867-3910.
|
31. |
Geetha M, Singh AK, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog Mater Sci, 2009, 54(3): 397-425.
|
32. |
Dziaduszewska M, Zielinski A. Structural and material determinants influencing the behavior of porous Ti and its alloys made by additive manufacturing techniques for biomedical applications. Materials, 2021, 14(4): .712.
|
33. |
Li EZ, Guo WL, Wang HD, et al. Research on tribological behavior of PEEK and glass fiber reinforced PEEK composite. Physcs Proc, 2013, 50: 453-460.
|
34. |
Aloyaydi BA, Sivasankaran S. Low-velocity impact characteristics of 3D-printed poly-lactic acid thermoplastic processed by fused deposition modeling. T Indian I Metals, 2020, 73(6): 1669-1677.
|
35. |
Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 2006, 27(9): 1728-1734.
|
36. |
Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 2012, 8(11): 3888-3903.
|
37. |
Chen QZ, Thouas GA. Metallic implant biomaterials. Mat Sci Eng R, 2015, 87: 1-57.
|
38. |
Suroto H, Anindita Satmoko B, Prajasari T, et al. Biodegradable vs nonbiodegradable suture anchors for rotator cuff repair: a systematic review and meta-analysis. EFORT Open Rev, 2023, 8(10): 731-747.
|
39. |
Cho CH, Bae KC, Kim DH. Biomaterials used for suture anchors in orthopedic surgery. Clin Orthop Surg, 2021, 13(3): 287-292.
|
40. |
Chen Y, Sun Y, Wu X, et al. Rotator cuff repair with biodegradable high-purity magnesium suture anchor in sheep model. J Orthop Transl, 2022, 35: 62-71.
|
41. |
Ma D, Wang J, Zheng M, et al. Degradation behavior of ZE21C magnesium alloy suture anchors and their effect on ligament-bone junction repair. Bioact Mater, 2023, 26: 128-141.
|
42. |
Su TS, Tang HY, Jang JSC, et al. Design and development of magnesium-based suture anchor for rotator cuff repair using finite element analysis and in vitro testing. Appl Sci-Basel, 2021, 11(20): 9602.
|
43. |
Chen B, Liang Y, Zhang J, et al. Synergistic enhancement of tendon-to-bone healing via anti-inflammatory and pro-differentiation effects caused by sustained release of Mg2+/curcumin from injectable self-healing hydrogels. Theranostics, 2021, 11(12): 5911-5925.
|
44. |
Bockmann B, Jaeger E, Dankl L, et al. A biomechanical comparison of steel screws versus PLLA and magnesium screws for the Latarjet procedure. Arch Orthop Trauma Surg, 2022, 142(6): 1091-1098.
|
45. |
Song B, Li W, Chen Z, et al. Biomechanical comparison of pure magnesium interference screw and polylactic acid polymer interference screw in anterior cruciate ligament reconstruction-A cadaveric experimental study. J Orthop Translat, 2016, 8: 32-39.
|
46. |
Wang J, Xu J, Song B, et al. Magnesium (Mg) based interference screws developed for promoting tendon graft incorporation in bone tunnel in rabbits. Acta Biomater, 2017, 63: 393-410.
|
47. |
Wang J, Wu Y, Li H, et al. Magnesium alloy based interference screw developed for ACL reconstruction attenuates peri-tunnel bone loss in rabbits. Biomaterials, 2018, 157: 86-97.
|
48. |
Diekmann J, Bauer S, Weizbauer A, et al. Examination of a biodegradable magnesium screw for the reconstruction of the anterior cruciate ligament: A pilot in vivo study in rabbits. Mat Sci Eng C-Mater, 2016, 59: 1100-1109.
|
49. |
Fu Y, Yin Y, Guan J, et al. The evaluation of a degradable Magnesium alloy Bio-Transfix nail system compounded with bone morphogenetic protein-2 in a beagle anterior cruciate ligament reconstruction model. J Biomater Appl, 2019, 34(5): 687-698.
|
50. |
Hantes ME, Kotsovolos ES, Mastrokalos DS, et al. Arthroscopic meniscal repair with an absorbable screw: results and surgical technique. Knee Surg Sports Traumatol Arthrosc, 2005, 13(4): 273-279.
|
51. |
Tsai AM, Mcallister DR, Chow S, et al. Results of meniscal repair using a bioabsorbable screw. Arthroscopy, 2004, 20(6): 586-590.
|
52. |
Doral MN, Bilge O, Huri G, et al. Modern treatment of meniscal tears. EFORT Open Rev, 2018, 3(5): 260-268.
|
53. |
Zhang Z, Zhou Y, Li W, et al. Local administration of magnesium promotes meniscal healing through homing of endogenous stem cells: a proof-of-concept study. Am J Sports Med, 2019, 47(4): 954-967.
|
54. |
Sun Y, Zhang Y, Wu Q, et al. 3D-bioprinting ready-to-implant anisotropic menisci recapitulate healthy meniscus phenotype and prevent secondary joint degeneration. Theranostics, 2021, 11(11): 5160-5173.
|
55. |
Liu C, Yang GZ, Zhou ML, et al. Magnesium ammonium phosphate composite cell-laden hydrogel promotes osteogenesis and angiogenesis. Acs Omega, 2021, 6(14): 9449-9459.
|
56. |
Han P, Cheng P, Zhang S, et al. In vitro and in vivo studies on the degradation of high-purity Mg (99.99wt%) screw with femoral intracondylar fractured rabbit model . Biomaterials, 2015, 64: 57-69.
|
57. |
Han HS, Loffredo S, Jun I, et al. Current status and outlook on the clinical translation of biodegradable metals. Mater Today, 2019, 23: 57-71.
|
58. |
Xin Y, Hu T, Chu P. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater, 2011, 7(4): 1452-1459.
|
59. |
Xie K, Wang L, Guo Y, et al. Effectiveness and safety of biodegradable Mg-Nd-Zn-Zr alloy screws for the treatment of medial malleolar fractures. J Orthop Translat, 2021, 27: 96-100.
|
60. |
Yang Y, Michalczyk C, Singer F, et al. In vitro study of polycaprolactone/bioactive glass composite coatings on corrosion and bioactivity of pure Mg. Appl Surf Sci, 2015, 355: 832-841.
|
61. |
Xing F, Li S, Yin D, et al. Recent progress in Mg-based alloys as a novel bioabsorbable biomaterials for orthopedic applications. J Magnes Alloy, 2022, 10(6): 1428-1456.
|
62. |
Herickhoff P, Safran M, Yung P, et al. Pros and cons of different ACL graft fixation devices. Berlin: Springer, 2017: 277-288.
|