1. |
Aponte-Tinao LA, Ayerza MA, Muscolo DL, et al. What are the risk factors and management options for infection after reconstruction with massive bone allografts? Clin Orthop Relat Res, 2016, 474(3): 669-673.
|
2. |
Errani C, Ceruso M, Donati DM, et al. Microsurgical reconstruction with vascularized fibula and massive bone allograft for bone tumors. Eur J Orthop Surg Traumatol, 2019, 29(2): 307-311.
|
3. |
Giarmatzis G, Jonkers I, Wesseling M, et al. Loading of hip measured by hip contact forces at different speeds of walking and running. J Bone Miner Res, 2015, 30(8): 1431-1440.
|
4. |
吴玉宇. 人工关节置换与内固定治疗骨质疏松性不稳定股骨粗隆间骨折的效果对比. 当代医药论丛, 2023, 21(19): 16-18.
|
5. |
Yang J, Li W, Feng R, et al. Intercalary frozen autografts for reconstruction of bone defects following meta-/diaphyseal tumor resection at the extremities. BMC Musculoskelet Disord, 2022, 23(1): 890. doi: 10.1186/s12891-022-05840-6.
|
6. |
Ortiz-Cruz E, Gebhardt MC, Jennings LC, et al. The results of transplantation of intercalary allografts after resection of tumors. A long-term follow-up study. J Bone Joint Surg (Am), 1997, 79(1): 97-106.
|
7. |
Hornicek FJ, Gebhardt MC, Tomford WW, et al. Factors affecting nonunion of the allograft-host junction. Clin Orthop Relat Res, 2001, (382): 87-98.
|
8. |
Manawar S, Myrick E, Awad P, et al. Use of allograft bone matrix in clinical orthopedics. Regen Med, 2024, 19(5): 247-256.
|
9. |
Duru Ç, Biniazan F, Hadzimustafic N, et al. Review of machine perfusion studies in vascularized composite allotransplant preservation. Front Transplant, 2023, 2: 1323387. doi: 10.3389/frtra.2023.1323387.
|
10. |
Yang Y, Rao J, Liu H, et al. Biomimicking design of artificial periosteum for promoting bone healing. J Orthop Translat, 2022, 36: 18-32.
|
11. |
Capanna R, Campanacci DA, Belot N, et al. A new reconstructive technique for intercalary defects of long bones: the association of massive allograft with vascularized fibular autograft. Long-term results and comparison with alternative techniques. Orthop Clin North Am, 2007, 38(1): 51-60.
|
12. |
Campanacci DA, Scanferla R, Marsico M, et al. Intercalary resection of the tibia for primary bone tumors: Are vascularized fibula autografts with or without allografts a durable reconstruction? Clin Orthop Relat Res, 2024, 482(6): 960-975.
|
13. |
李远, 徐海荣, 单华超, 等. 液氮灭活自体瘤段骨回植修复长骨骨干恶性肿瘤切除后骨缺损的中期随访. 中华骨科杂志, 2023, 43(10): 613-619.
|
14. |
Subhadrabandhu S, Takeuchi A, Yamamoto N, et al. Frozen autograft-prosthesis composite reconstruction in malignant bone tumors. Orthopedics, 2015, 38(10): e911-e918.
|
15. |
Kotb SZ, Mostafa MF. Recycling of extracorporeally irradiated autograft for malignant bone tumors: long-term follow-up. Ann Plast Surg, 2013, 71(5): 493-499.
|
16. |
Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part Ⅰ. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res, 1989(238): 249-281.
|
17. |
Blázquez-Carmona P, Mora-Macías J, Morgaz J, et al. Mechanobiology of bone consolidation during distraction osteogenesis: Bone lengthening vs. bone transport. Ann Biomed Eng, 2021, 49(4): 1209-1221.
|
18. |
Takeuchi A, Yamamoto N, Hayashi K, et al. Joint-preservation surgery for pediatric osteosarcoma of the knee joint. Cancer Metastasis Rev, 2019, 38(4): 709-722.
|
19. |
Patil B, Kansay R, Gupta S, et al. An initial study into the role of teriparatide in absent or delayed regenerate formation during distraction osteogenesis: A case series. Strategies Trauma Limb Reconstr, 2020, 15(2): 117-120.
|
20. |
Borzunov DY, Kolchin SN, Malkova TA. Role of the Ilizarov non-free bone plasty in the management of long bone defects and nonunion: Problems solved and unsolved. World J Orthop, 2020, 11(6): 304-318.
|
21. |
王林, 吴学建, 王顺利, 等. Ilizarov技术治疗原发性骨肿瘤保肢术后感染的疗效评价. 中国修复重建外科杂志, 2016, 30(12): 1452-1456.
|
22. |
Wagner F, Vach W, Augat P, et al. Daily subcutaneous Teriparatide injection increased bone mineral density of newly formed bone after tibia distraction osteogenesis, a randomized study. Injury, 2019, 50(8): 1478-1482.
|
23. |
Zhang Z, Zhao Z, Han W, et al. Accuracy and safety of robotic navigation-assisted distraction osteogenesis for hemifacial microsomia. Front Pediatr, 2023, 11: 1158078. doi: 10.3389/fped.2023.1158078.
|
24. |
Fragomen AT, Rozbruch SR. Lengthening and deformity correction about the knee using a magnetic internal lengthening nail. SICOT J, 2017, 3: 25. doi: 10.1051/sicotj/2017014.
|
25. |
Wang X, Wei F, Luo F, et al. Induction of granulation tissue for the secretion of growth factors and the promotion of bone defect repair. J Orthop Surg Res, 2015, 10: 147. doi: 10.1186/s13018-015-0287-4.
|
26. |
Wu H, Shen J, Yu X, et al. Two stage management of Cierny-Mader type Ⅳ chronic osteomyelitis of the long bones. Injury, 2017, 48(2): 511-518.
|
27. |
Baud A, Flecher X, Rochwerger RA, et al. Comparing the outcomes of the induced membrane technique between the tibia and femur: Retrospective single-center study of 33 patients. Orthop Traumatol Surg Res, 2020, 106(5): 789-796.
|
28. |
Morwood MP, Streufert BD, Bauer A, et al. Intramedullary nails yield superior results compared with plate fixation when using the masquelet technique in the femur and tibia. J Orthop Trauma, 2019, 33(11): 547-552.
|
29. |
Qu H, Guo W, Yang R, et al. Reconstruction of segmental bone defect of long bones after tumor resection by devitalized tumor-bearing bone. World J Surg Oncol, 2015, 13: 282. doi: 10.1186/s12957-015-0694-3.
|
30. |
Kim NH, Yang BE, On SW, et al. Customized three-dimensional printed ceramic bone grafts for osseous defects: a prospective randomized study. Sci Rep, 2024, 14(1): 3397. doi: 10.1038/s41598-024-53686-w.
|
31. |
Qu Z, Yue J, Song N, et al. Innovations in 3D printed individualized bone prosthesis materials: revolutionizing orthopedic surgery: a review. Int J Surg, 2024. doi: 10.1097/JS9.0000000000001842.
|
32. |
Hu X, Wen Y, Lu M, et al. Biomechanical and clinical outcomes of 3D-printed versus modular hemipelvic prostheses for limb-salvage reconstruction following periacetabular tumor resection: a mid-term retrospective cohort study. J Orthop Surg Res, 2024, 19(1): 258. doi: 10.1186/s13018-024-04697-w.
|
33. |
Ghosh A, Orasugh JT, Ray SS, et al. Integration of 3D printing-coelectrospinning: concept shifting in biomedical applications. ACS Omega, 2023, 8(31): 28002-28025.
|
34. |
Li Z, Luo Y, Lu M, et al. 3D-printed personalized porous acetabular component to reconstruct extensive acetabular bone defects in primary hip arthroplasty. Orthop Surg, 2024, 16(7): 1642-1647.
|
35. |
Hu X, Lu M, Wang Y, et al. Advanced pelvic girdle reconstruction with three dimensional-printed custom hemipelvic endoprostheses following pelvic tumour resection. Int Orthop, 2024, 48(8): 2217-2231.
|
36. |
Li Z, Lu M, Zhang Y, et al. Intercalary prosthetic reconstruction with three-dimensional-printed custom-made porous component for defects of long bones with short residual bone segments after tumor resection. Orthop Surg, 2024, 16(2): 374-382.
|
37. |
Borse K, Shende P. 3D-to-4D structures: an exploration in biomedical applications. AAPS PharmSciTech, 2023, 24(6): 163. doi: 10.1208/s12249-023-02626-4.
|
38. |
Li Z, Lu M, Zhang Y, et al. Computer-aided design and 3D-printed personalized stem-plate composite for precision revision of the proximal humerus endoprosthetic replacement: A technique note. Orthop Surg, 2023, 15(11): 3000-3005.
|
39. |
Ansaf RB, Ziebart R, Gudapati H, et al. 3D bioprinting-a model for skin aging. Regen Biomater, 2023, 10: rbad060. doi: 10.1093/rb/rbad060.
|
40. |
Aldhaher A, Shahabipour F, Shaito A, et al. 3D hydrogel/ bioactive glass scaffolds in bone tissue engineering: Status and future opportunities. Heliyon, 2023, 9(7): e17050. doi: 10.1016/j.heliyon.2023.e17050.
|
41. |
张润泽, 刘宏伟, 张文, 等. 个性化3D打印钛合金短柄股骨假体的生物力学评价. 医用生物力学, 2022, 37(6): 1064-1069.
|
42. |
范华全, 王富友, 何锐, 等. 3D打印多孔钽金属髋臼骨缺损假体的制备及其初步临床应用. 陆军军医大学学报, 2022, 44(15): 1516-1522.
|
43. |
Ashkanfar A, Toh SMS, English R, et al. The impact of femoral head size on the wear evolution at contacting surfaces of total hip prostheses: A finite element analysis. J Mech Behav Biomed Mater, 2024, 153: 106474. doi: 10.1016/j.jmbbm.2024.106474.
|
44. |
Ao J, Zhang X, You Y, et al. Bioinspired hybrid nanostructured PEEK implant with enhanced antibacterial and anti-inflammatory synergy. ACS Appl Mater Interfaces, 2024, 16(30): 38989-39004.
|
45. |
Costa WB, Félix Farias AF, Silva-Filho EC, et al. Polysaccharide hydroxyapatite (nano) composites and their biomedical applications: An overview of recent years. ACS Omega, 2024, 9(28): 30035-30070.
|
46. |
Jing G, Suhail M, Lu Y, et al. Engineering titanium-hydroxyapatite nanocomposite hydrogels for enhanced antibacterial and wound healing efficacy. ACS Biomater Sci Eng, 2024, 10(8): 5068-5079.
|
47. |
Healey JH, Abdeen A, Morris CD, et al. Telescope allograft method to reconstitute the diaphysis in limb salvage surgery. Clin Orthop Relat Res, 2009, 467(7): 1813-1819.
|
48. |
Zimel MN, Farfalli GL, Zindman AM, et al. Revision distal femoral arthroplasty with the Compress(®) prosthesis has a low rate of mechanical failure at 10 years. Clin Orthop Relat Res, 2016, 474(2): 528-536.
|
49. |
Avedian RS, Goldsby RE, Kramer MJ, et al. Effect of chemotherapy on initial compressive osseointegration of tumor endoprostheses. Clin Orthop Relat Res, 2007, 459: 48-53.
|
50. |
Li Z, Lu M, Zhang Y, et al. 3D-printed personalized lattice implant as an innovative strategy to reconstruct geographic defects in load-bearing bones. Orthop Surg, 2024, 16(4): 821-829.
|
51. |
Li Z, Lu M, Gong T, et al. Revision for solid-body breakage of the 3D-printed implant following joint-sparing surgery: A technical note. Orthop Surg, 2024, 16(4): 1010-1016.
|
52. |
Torres-Sanchez C, Al Mushref FRA, Norrito M, et al. The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds. Mater Sci Eng C Mater Biol Appl, 2017, 77: 219-228.
|
53. |
You Q, Lu M, Min L, et al. A comparison of cemented and cementless intra-neck curved stem use during hip-preserving reconstruction following massive femoral malignant tumor removal. Front Oncol, 2022, 12: 933057. doi: 10.3389/fonc.2022.933057.
|
54. |
You Q, Lu M, Min L, et al. Hip-preserving reconstruction using a customized cemented femoral endoprosthesis with a curved stem in patients with short proximal femur segments: Mid-term follow-up outcomes. Front Surg, 2022, 9: 991168. doi: 10.3389/fsurg.2022.991168.
|
55. |
王洋, 卢敏勋, 张瑀琦, 等. 生物型同种异体骨-假体复合物重建股骨近端肿瘤性骨缺损的远期疗效. 中国修复重建外科杂志, 2023, 37(10): 1190-1197.
|
56. |
Langlais F, Lambotte JC, Collin P, et al. Long-term results of allograft composite total hip prostheses for tumors. Clin Orthop Relat Res, 2003(414): 197-211.
|
57. |
Lee SH, Ahn YJ, Chung SJ, et al. The use of allograft prosthesis composite for extensive proximal femoral bone deficiencies: a 2- to 9. 8-year follow-up study. J Arthroplasty, 2009, 24(8): 1241-1248.
|
58. |
王延岭, 闵理, 段宏, 等. 生物型APC重建股骨近端瘤性骨缺损的保肢技术及疗效分析. 四川大学学报 (医学版), 2018, 49(1): 129-132.
|
59. |
Kakimoto T, Matsumine A, Asanuma K, et al. The clinical outcomes of total femur prosthesis in patients with musculoskeletal tumors. SICOT J, 2019, 5: 23. doi: 10.1051/sicotj/2019020.
|