1. |
Bodin F, Dissaux C, Romain B, et al. Complex abdominal wall defect reconstruction using a latissimus dorsi free flap with mesh after malignant tumor resection. Microsurgery, 2017, 37(1): 38-43.
|
2. |
Gu Y, Wang P, Li H, et al. Chinese expert consensus on adult ventral abdominal wall defect repair and reconstruction. Am J Surg, 2021, 222(1): 86-98.
|
3. |
Ravo B, Falasco G. Pure tissue inguinal hernia repair with the use of biological mesh: a 10-year follows up. A prospective study. Hernia, 2020, 24(1): 121-126.
|
4. |
Saiding Q, Chen Y, Wang J, et al. Abdominal wall hernia repair: from prosthetic meshes to smart materials. Mater Today Bio, 2023, 21: 100691. doi: 10.1016/j.mtbio.2023.100691.
|
5. |
Liao J, Li X, Fan Y. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions. Bioact Mater, 2023, 26: 387-412.
|
6. |
Guillaume O, Pérez-Tanoira R, Fortelny R, et al. Infections associated with mesh repairs of abdominal wall hernias: Are antimicrobial biomaterials the longed-for solution? Biomaterials, 2018, 167: 15-31.
|
7. |
Kokotovic D, Bisgaard T, Helgstrand F. Long-term recurrence and complications associated with elective incisional hernia repair. JAMA, 2016, 316(15): 1575-1582.
|
8. |
Wang Z, You W, Wang W, et al. Dihydromyricetin-incorporated multilayer nanofibers accelerate chronic wound healing by remodeling the harsh wound microenvironment. Adv Fiber Mater, 2022, 4(6): 1556-1571.
|
9. |
Yang Y, Du Y, Zhang J, et al. Structural and functional design of electrospun nanofibers for hemostasis and wound healing. Adv Fiber Mater, 2022, 4(5): 1027-1057.
|
10. |
Meng Z, Wang H, Liu Y, et al. Evaluation of the effectiveness of alginate-based hydrogels in preventing peritoneal adhesions. Regen Biomater, 2023, 10: rbad017. doi: 10.1093/rb/rbad017.
|
11. |
Liu Z, Wei N, Tang R. Functionalized strategies and mechanisms of the emerging mesh for abdominal wall repair and regeneration. ACS Biomater Sci Eng, 2021, 7(6): 2064-2082.
|
12. |
Dreger NZ, Fan Z, Zander ZK, et al. Amino acid-based poly (ester urea) copolymer films for hernia-repair applications. Biomaterials, 2018, 182: 44-57.
|
13. |
Nishiguchi A, Ito S, Nagasaka K, et al. Tissue-adhesive decellularized extracellular matrix patches reinforced by a supramolecular gelator to repair abdominal wall defects. Biomacromolecules, 2023, 24(4): 1545-1554.
|
14. |
Yuan J, Wang Y, Yang W, et al. Biomimetic peptide dynamic hydrogel inspired by humanized defensin nanonets as the wound-healing gel coating. Chem Eng J, 2023, 470: 144266. doi: 10.1016/j.cej.2023.144266.
|
15. |
闫志文, 李硕峰, 李傲, 等. 改性木葡聚糖温敏水凝胶的制备及生物相容性评价. 中国组织工程研究, 2019, 23(30): 4841-4847.
|
16. |
Pita-López ML, Fletes-Vargas G, Espinosa-Andrews H, et al. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. Eur Polym J, 2021, 145: 110176. doi: 10.1016/j.eurpolymj.2020.110176.
|
17. |
Wang W, Xue C, Mao X. Chitosan: Structural modification, biological activity and application. Int J Biol Macromol, 2020, 164: 4532-4546.
|
18. |
Akbaba S, Atila D, Keskin D, et al. Multilayer fibroin/chitosan oligosaccharide lactate and pullulan immunomodulatory patch for treatment of hernia and prevention of intraperitoneal adhesion. Carbohydr Polym, 2021, 265: 118066. doi: 10.1016/j.carbpol.2021.118066.
|
19. |
Li L, Wang N, Jin X, et al. Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials, 2014, 35(12): 3903-3917.
|
20. |
Hu W, Zhang Z, Zhu L, et al. Combination of polypropylene mesh and in situ injectable mussel-inspired hydrogel in laparoscopic hernia repair for preventing post-surgical adhesions in the piglet model. ACS Biomater Sci Eng, 2020, 6(3): 1735-1743.
|
21. |
Miserez M, Jairam AP, Boersema GSA, et al. Resorbable synthetic meshes for abdominal wall defects in preclinical setting: A literature review. J Surg Res, 2019, 237: 67-75.
|
22. |
Hu W, Lu S, Zhang Z, et al. Mussel-inspired copolymer-coated polypropylene mesh with anti-adhesion efficiency for abdominal wall defect repair. Biomater Sci, 2019, 7(4): 1323-1334.
|
23. |
Zhang H, Xu D, Zhang Y, et al. Silk fibroin hydrogels for biomedical applications. Smart Medicine, 2022, 1(1): e20220011. doi: 10.1002/SMMD.20220011.
|
24. |
Yuan N, Shao K, Huang S, et al. Chitosan, alginate, hyaluronic acid and other novel multifunctional hydrogel dressings for wound healing: A review. Int J Biol Macromol, 2023, 240: 124321. doi: 10.1016/j.ijbiomac.2023.124321.
|
25. |
Sousa AB, Águas AP, Barbosa MA, et al. Immunomodulatory biomaterial-based wound dressings advance the healing of chronic wounds via regulating macrophage behavior. Regen Biomater, 2022, 9: rbac065. doi: 10.1093/rb/rbac065.
|
26. |
Schaffrick L, Ding J, Kwan P, et al. The dynamic changes of monocytes and cytokines during wound healing post-burn injury. Cytokine, 2023, 168: 156231. doi: 10.1016/j.cyto.2023.156231.
|
27. |
Min D, Nube V, Tao A, et al. Monocyte phenotype as a predictive marker for wound healing in diabetes-related foot ulcers. J Diabetes Complications, 2021, 35(5): 107889. doi: 10.1016/j.jdiacomp.2021.107889.
|
28. |
Wang S, Lu M, Cao Y, et al. Degradative polylactide nanofibers promote M2 macrophage polarization via STAT6 pathway in peritendinous adhesion. Compos Part B Eng, 2023, 253: 110520. doi: 10.1016/j.compositesb.2023.110520.
|
29. |
Kroemer G, Zitvogel L. Ghrelin and leptin regulating wound healing. Trends Immunol, 2022, 43(10): 777-779.
|
30. |
Zheng H, Cheng X, Jin L, et al. Recent advances in strategies to target the behavior of macrophages in wound healing. Biomed Pharmacother, 2023, 165: 115199. doi: 10.1016/j.biopha.2023.115199.
|