1. |
Wu D, Shen Yh, Russell L,et al. Molecular mechanisms of thoracic aortic dissection. J Surg Res,2013,184(2): 907-924.
|
2. |
Kochanek KD, Xu J, Murphy SL, et al. Deaths: final data for 2009. Natl Vital Stat Rep, 2011, 60(3): 1-116.
|
3. |
Ailawadi G, Eliason JL, Upchurch GR. Current concepts in the pathogenesis of abdominal aortic aneurysm. J Vasc Surg, 2003, 38(3): 584-588.
|
4. |
Kawai-Kowase K, Owens GK. Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am J Physiol Cell Physiol, 2007, 292(1): C59-C69.
|
5. |
Lesauskaite V, Epistolato MC, Castagnini M, et al. Expression of matrix metalloproteinases,their tissue inhibitors and osteopontin in the wall of thoracic and abdiminal aortas with dilatative pathology. J Hum Pathol, 2006, 37(8): 1076-1084.
|
6. |
Vainas T, Lubbers T, Stassen FR, et al. Serum C-reactive protein level is associated with abdminal aortic aneurysm size and May be produced by aneurysmal tissue. J Circulation, 2003, 10(7): 1103-1105.
|
7. |
Owens GK, Kumar MS,Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev, 2004, 84(3): 767-801.
|
8. |
Li J, Li G, Xu W. Histone deacetylase inhibitors:an attractive strategy for cancer therapy. Curr Med Chem, 2013, 20(14): 1858-1886.
|
9. |
Tang JH, Yan HD, Zhuang SG. Histone deacetylases as targets for treatment of multiple diseases. Clin Sci, 2013, 124(11/12): 651-662.
|
10. |
Mcdonald OG, Wamhoff BR, Hoofnagle MH, et al. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest, 2006, 116(1): 36-48.
|
11. |
Margariti A, Zampetaki A, Xiao QZ, et al. Histone deacetylase 7 controls endothelial cell growth through modulation of beta-Catenin. Circ Res, 2010, 106(7): 1U75-1202.
|
12. |
Findeisen HM, Gizard F, Zhao YE, et al. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition. Arterioscler Thromb Vasc Biol, 2011, 31(4): 851-U302.
|
13. |
Suda S, Katsura KI, Kanamaru T, et al. Valproic acid attenuates ischemia-reperfusion injury in the rat brain through inhibition of oxidative stress and inflammation. Eur J Pharmacol, 2013, 707(1/3): 26-31.
|
14. |
Bhamidipati CM, Mehta GS, Lu GY, et al. Development of a novel murine model of aortic aneurysms using peri-adventitial elastase. Surgery, 2012, 152(2): 238-246.
|
15. |
Yuan SM, Jing H. Cystic medial necrosis: pathological findings and clinical implications. Rev Bras Cir Cardiovasc, 2011, 26(1): 107-115.
|
16. |
Dietz HC, Cutting GR, Pyeritz RE,et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature, 1991, 352(6333): 337-339.
|
17. |
Loeys BL, Chen J, Neptune ER, et al. A syndrome of altered cardiovascular,craniofacial,neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet, 2005, 37: 275-281.
|
18. |
Van de Laar IM, Oldenburg RA, Pals G, et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet, 2011, 43: 121-126.
|
19. |
Guo DC, Pannu H, Tran-Fadulu V, et al. Mutations in smooth muscle alpha-actin (ACTA2) Lead to thoracic aortic aneurysms and dissections. Nat Genet, 2007, 39(12): 1488-1493.
|
20. |
Zhu LM, Vranckx R, Van Kien PK,et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet, 2006, 38(3): 343-349.
|
21. |
Kuivaniemi H, Ryer EJ, Elmore JR, et al. Update on abdominal aortic aneurysm research: from clinical to genetic studies. Scientifica (Cairo), 2014: 564734.
|
22. |
Schonbeck U, Sukhova GK, Gerdes N, et al. T(H)2 predominant immune responses prevail in human abdominal aortic aneurysm. Am J Pathol, 2002, 161: 499-506.
|
23. |
Xiong WF, Zhao Y, Prall A, et al. Key roles of CD4(+) T cells and IFN-gamma in the development of abdominal aortic aneurysms in a murine model. J Immunol, 2004, 172(4): 2607-2612.
|
24. |
Galle C, Schandene L, Stordeur P, et al. Predominance of type 1 CD4(+)T cells in human abdominal aortic aneurysm. Clin Exp Immunol, 2005, 142(3): 519-527.
|
25. |
Lindeman JH, Abdul-Hussien H, Schaapherder AF, et al. Enhanced expression and activationofpro-inflammatory transcription factors distinguish aneurysmal from atherosclerotic aorta: IL-6- and IL-8-dominated inflammatory responses prevail in the human aneurysm. Clin Sci (Lond), 2008,114:687-97.
|
26. |
Toumpoulis IK, Oxford JT, Cowan DB, et al. Differential expression of collagen type V and XI alpha-1 in human ascending thoracic aortic aneurysms. Arterioscler Thromb Vasc Biol, 2009, 29(7): E119.
|
27. |
Ghosh AK, Quaggin SE,Vaughan DE. Molecular basis of organ fibrosis: Potential therapeutic approaches. Exp Biol Med, 2013, 238(5): 461-481.
|
28. |
Ikonomidis JS, Gibson WC, Gardner J, et al. A murine model of thoracic aortic aneurysms. J Surg Res, 2003, 115(1): 157-163.
|