1. |
Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin, 2011, 61(2):69.
|
2. |
陈万青, 主编. 2013中国肿瘤登记年报. 北京:军事医学科学出 版社. 2014.
|
3. |
曾红梅, 郑荣寿, 张思维, 等. 中国食管癌发病趋势分析和预测. 中华预防医学杂志, 2012, 46(7):593.
|
4. |
方文涛, 陈文虎. 食管癌手术治疗原则和淋巴结清扫. 中国癌症杂志, 2011(7):522.
|
5. |
赫捷, 邵康. 中国食管癌流行病学现状、诊疗现状及担任中华未来对策. 中国癌症杂志, 2011, 21(7):501.
|
6. |
Mohamed A, El-Rayes B, Khuri FR, et al. Targeted therapies in metastatic esophageal cancer:Advances over the past decade.Crit Rev Oncol Hematol, 2014, 91(2):186.
|
7. |
Wu CC, Taylor RS, Lane DR, et al.GMx33:a novel family of trans-Golgi proteins identified by proteomics.Traffic, 2000, 1(12):963.
|
8. |
Dippold HC, Ng MM, Farber-Katz SE, et al. GOLPH3 bridges phosphatidylinositol-4-phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell, 2009, 139(2):337.
|
9. |
Scott KL, Kabbarah O, Liang MC, et al. GOLPH3 modulates mTOR signalling and rapamycin sensitivity in cancer. Nature, 2009, 459(7250):1085.
|
10. |
Wood CS, Schmitz KR, Bessman NJ, et al. PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking. J Cell Biol, 2009, 187(7):967.
|
11. |
Scott KL, Chin L. Signaling from the Golgi:mechanisms and models for Golgi phosphoprotein 3-mediated oncogenesis. Clin Cancer Res, 2010, 16(8):2229.
|
12. |
Bugarcic A, Zhe Y, Kerr MC, et al. Vps26A and Vps26B subunits define distinct retromer complexes.Traffic, 2011, 12(12):1759.
|
13. |
Graham TR, Burd CG. Coordination of Golgi functions by phosphatidylinositol 4-kinases.Trends Cell Biol, 2011, 21(2):113.
|
14. |
Taft MH, Behrmann E, Munske-Weidemann LC, et al. Functional characterization of human myosin-18A and its interaction with F-actin and GOLPH3. J Biol Chem, 2013, 288(42):30029.
|
15. |
Li XY, Liu W, Chen SF, et al. Expression of the Golgi phosphoprotein-3 gene in human gliomas:a pilot study. J Neurooncol, 2011, 105(2):159.
|
16. |
Hua X, Yu L, Pan W, et al. Increased expression of Golgi phosphoprotein-3 is associated with tumor aggressiveness and poor prognosis of prostate cancer.Diagn Pathol, 2012, 7:127.
|
17. |
Li H, Guo L, Chen SW, et al. GOLPH3 overexpression correlates with tumor progression and poor prognosis in patients with clinically N0 oral tongue cancer.J Transl Med, 2012, 10:168.
|
18. |
Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, et al. Mitochondria "fuel" breast cancer metabolism:fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle, 2012, 11(23):4390.
|
19. |
Hu BS, Hu H, Zhu CY, et al. Overexpression of GOLPH3 is associated with poor clinical outcome in gastric cancer. Tumour Biol, 2013, 34(1):515.
|
20. |
Hu GS, Li YQ, Yang YM, et al. High expression of Golgi phosphoprotein-3 is associated with poor survival in patients with hepatocellular carcinoma.Tumour Biol, 2014, 35(9):8625-8632.
|
21. |
Ma Y, Ren Y, Zhang X, et al. High GOLPH3 expression is associated with a more aggressive behavior of epithelial ovarian carcinoma. Virchows Arch, 2014, 464(4):443.
|
22. |
Wang JH, Chen XT, Wen ZS, et al. High expression of GOLPH3 in esophageal squamous cell carcinoma correlates with poor prognosis.PLoS One, 2012, 7(10):e45622.
|
23. |
Shimada Y, Imamura M, Wagata T, et al. Characterization of 21 newly established esophageal cancer cell lines. Cancer, 1992, 69(2):277.
|
24. |
Tu L, Chen L, Banfield DK. A conserved N-terminal arginine-motif in GOLPH3-family proteins mediates binding to coatomer. Traffic, 2012, 13(11):1496.
|
25. |
Zeng Z, Lin H, Zhao X,et al. Overexpression of GOLPH3 promotes proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. Clin Cancer Res, 2012, 18(15):4059.
|
26. |
Zhou J, Xu T, Qin R, et al. Overexpression of Golgi phosphoprotein-3 (GOLPH3) in glioblastoma multiforme is associated with worse prognosis. J Neurooncol, 2012, 110(2):195.
|
27. |
Zhou X, Zhan W, Bian W, et al. GOLPH3 regulates the migration and invasion of glioma cells though RhoA.Biochem Biophys Res Commun, 2013, 433(3):338.
|
28. |
Alemany-Ribes M, Semino CE. Bioengineering 3D environments for cancer models. Adv Drug Deliv Rev, 2014, 79-80:40-49.
|
29. |
Lim SH, Becker TM, Chua W, et al. Circulating tumour cells and the epithelial mesenchymal transition in colorectal cancer. J Clin Pathol, 2014, 67(10):848-853.
|
30. |
Diaz-Lopez A, Moreno-Bueno G, Cano A. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Manag Res, 2014, 6:205.
|
31. |
Kim S, Lee JW.Membrane Proteins involved in epithelial-mesenchymal transition and tumor invasion:Studies on TMPRSS4 and TM4SF5.Genomics Inform, 2014, 12(1):12.
|
32. |
Geng SQ, Alexandrou AT, Li JJ.Breast cancer stem cells:Multiple capacities in tumor metastasis. Cancer Lett, 2014, 349(1):1.
|
33. |
Monnier Y, Farmer P, Bieler G, et al.CYR61 and alphaVbeta5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma.Cancer Res, 2008, 68(18):7323.
|
34. |
Sun ZJ, Wang Y, Cai Z, et al. Involvement of Cyr61 in growth, migration, and metastasis of prostate cancer cells.Br J Cancer, 2008, 99(10):1656.
|
35. |
Haque I, Mehta S, Majumder M, et al. Cyr61/CCN1 signaling is critical for epithelial-mesenchymal transition and stemness and promotes pancreatic carcinogenesis. Mol Cancer, 2011, 10:8.
|
36. |
Kaufhold S, Bonavida B. Central role of Snail1 in the regulation of EMT and resistance in cancer:a target for therapeutic intervention. J Exp Clin Cancer Res, 2014, 33(1):62.
|
37. |
Grass GD, Dai L, Qin Z, et al. CD147:Regulator of hyaluronan signaling in invasiveness and chemoresistance. Adv Cancer Res, 2014, 123:351.
|
38. |
Kim Y, Kumar S. CD44-mediated adhesion to hyaluronic acid contributes to mechanosensing and invasive motility. Mol Cancer Res, 2014, 12(10):1416-1429.
|
39. |
Takahashi H, Takizawa T, Matsubara S, et al. Extravillous trophoblast cell invasion is promoted by the CD44-hyaluronic acid interaction. Placenta, 2014, 35(3):163.
|
40. |
Ouhtit A, Madani S, Gupta I, et al. TGF-beta2:a novel target ofCD44-Promoted breast cancer invasion. J Cancer, 2013, 4(7):566.
|
41. |
Gudadze M, Kankava K, Mariamidze A, et al. Distribution of cancer stem cells in ductal invasive carcinoma of breast (review). Georgian Med News, 2013, 222:44.
|
42. |
Sinha N, Mukhopadhyay S, Das DN, et al. Relevance of cancer initiating/stem cells in carcinogenesis and therapy resistance in oral cancer. Oral Oncol, 2013, 49(9):854.
|
43. |
Lopez J, Valdez-Morales FJ, Benitez-Bribiesca L, et al. Normal and cancer stem cells of the human female reproductive system. Reprod Biol Endocrinol, 2013, 11:53.
|
44. |
Xu L. Cancer stem cell in the progression and therapy of pancreatic cancer. Front Biosci (Landmark Ed), 2013, 18:795.
|