- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P. R. China;
Postoperative cognitive dysfunction (POCD) is a common and important complication after cardiac surgery. The pathological reactions caused by cardiac surgery, such as traumatic stress reaction, inflammation, hemodynamics disorders, and blood coagulation dysfunction, by triggering central inflammation, ischemia, hypoxia and ischemia-reperfusion injury and other mechanisms, leading to brain function-impairment, causing the development of POCD. According to the above mechanisms, taking corresponding protective measures, reducing the development of POCD, and improving the quality of life after cardiac surgery are of great importance.
Citation: GAOHong-xiang, WANGWei. Postoperative Cognitive Dysfunction after Cardiac Surgery: Pathogenetic Mechanisms and Coping Strategies. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2015, 22(8): 788-791. doi: 10.7507/1007-4848.20150197 Copy
1. | Bruggemans EF. Cognitive dysfunction after cardiac surgery:pathophysiological mechanisms and preventive strategies. Neth Heart J, 2013, 21(2):70-73. |
2. | van Harten AE, Scheeren TW, Absalom AR. A review of postoperative cognitive dysfunction and neuroinflammation associated with cardiac surgery and anaesthesia. Anaesthesia, 2012, 67(3):280-293. |
3. | 王海滨, 于布为. 术后认知功能障碍的研究进展. 麻醉与监护论坛, 2011, 18(6):429-430. |
4. | Evered L, Scott D A, Silbert B, et al. Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesth Analg, 2011, 112(5):1179-1185. |
5. | Coburn M, Fahlenkamp A, Zoremba N, et al. Postoperative cognitive dysfunction:Incidence and prophylaxis. J Anaesthesist, 2010, 59(2):177-185. |
6. | Bartels K, Mcdonagh DL, Newman MF, et al. Neurocognitive outcomes after cardiac surgeryJ. Curr Opin Anaesthesiol, 2013, 26(1):91-97. |
7. | Tarakji KG, Sabik JR, Bhudia SK, et al. Temporal onset, risk factors, and outcomes associated with stroke after coronary artery bypass grafting. JAMA, 2011, 305(4):381-390. |
8. | 楼松, 丁凡, 龙村, 等. 影响婴儿心脏手术后近期预后的危险因素分析. 中国胸心血管外科临床杂志, 2011, 18(3):222-226. |
9. | Selnes OA, Gottesman RF, Grega MA, et al. Cognitive and neurologic outcomes after coronary-artery bypass surgery. N Engl J Med, 2012, 366(3):250-257. |
10. | Sun X, Lindsay J, Monsein LH, et al. Silent brain injury after cardiac surgery:a review:cognitive dysfunction and magnetic resonance imaging diffusion-weighted imaging findings. J Am Coll Cardiol, 2012, 60(9):791-797. |
11. | Heringlake M, Garbers C, Kabler JH, et al. Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology, 2011, 114(1):58-69. |
12. | Lyman M, Lloyd DG, Ji X, et al. Neuroinflammation:The role and consequences. Neurosci Res, 2014, 79:1-12. |
13. | 侯晓彬, 肖明第. 全身炎症反应综合征与体外循环. 中国体外循环杂志, 2004, 2(2):119-121. |
14. | Widmann CN, Heneka MT. Long-term cerebral consequences of sepsis. Lancet Neurol, 2014, 13(6):630-636. |
15. | Vacas S, Degos V, Feng X, et al. The neuroinflammatory response of postoperative cognitive decline. Br Med Bull, 2013, 106:161-178. |
16. | Barrientos RM, Hein AM, Frank MG, et al. Intracisternal interleukin-1 receptor antagonist prevents postoperative cognitive decline and neuroinflammatory response in aged rats. J Neurosci, 2012, 32(42):14641-14648. |
17. | Cibelli M, Fidalgo AR, Terrando N, et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol, 2010, 68(3):360-368. |
18. | Hudetz JA, Gandhi SD, Iqbal Z, et al. Elevated postoperative inflammatory biomarkers are associated with short-and mediumterm cognitive dysfunction after coronary artery surgery. J Anesth, 2011, 25(1):1-9. |
19. | Porhomayon J, Kolesnikov S, Nader ND. The Impact of stress hormones on post-traumatic stress disorders symptoms and memory in cardiac surgery patients. J Cardiovasc Thorac Res, 2014, 6(2):79-84. |
20. | Lupien SJ, Maheu F, Tu M, et al. The effects of stress and stress hormones on human cognition:Implications for the field of brain and cognition. Brain Cogn, 2007, 65(3):209-237. |
21. | Fang Q, Qian X, An J, et al. Higher dose dexamethasone increases early postoperative cognitive dysfunction. J Neurosurg Anesthesiol, 2014, 26(3):220-225. |
22. | Mu DL, Li LH, Wang DX, et al. High postoperative serum cortisol level is associated with increased risk of cognitive dysfunction early after coronary artery bypass graft surgery:a prospective cohort study. PLoS One, 2013, 8(10):e77637. |
23. | Jespersen SN, Ostergaard L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab, 2012, 32(2):264-277. |
24. | Newman MF, Kramer D, Croughwell ND, et al. Differential age effects of mean arterial pressure and rewarming on cognitive dysfunction after cardiac surgery. Anesth Analg, 1995, 81(2):236-242. |
25. | Kadoi Y, Saito S, Fujita N, et al. Effects of balloon-induced pulsatile perfusion on postoperative short-and long-term cognitive dysfunction in diabetic patients with impaired cerebrovascular carbon dioxide reactivity. J Cardiothorac Vasc Anesth, 2013, 27(2):238-244. |
26. | Ono M, Brady K, Easley RB, et al. Duration and magnitude of blood pressure below cerebral autoregulation threshold during cardiopulmonary bypass is associated with major morbidity and operative mortality. J Thorac Cardiovasc Surg, 2014, 147(1):483-489. |
27. | de la Torre JC. Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc Psychiatry Neurol, 2012, 2012:367516. |
28. | Joshi B, Brady K, Lee J, et al. Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonary bypass and its potential association with stroke. Anesth Analg, 2010, 110(2):321-328. |
29. | Nathan HJ, Rodriguez R, Wozny D, et al. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass:five-year follow-up of a randomized trial. J Thorac Cardiovasc Surg, 2007, 133(5):1206-1211. |
30. | Sniecinski RM, Chandler WL. Activation of the hemostatic system during cardiopulmonary bypass. Anesth Analg, 2011, 113(6):1319-1333. |
31. | Yavari M, Becker RC. Coagulation and fibrinolytic protein kinetics in cardiopulmonary bypass. J Thromb Thrombolysis, 2009, 27(1):95-104. |
32. | Hayakawa M, Sawamura A, Gando S, et al. Disseminated intravascular coagulation at an early phase of trauma is associated with consumption coagulopathy and excessive fibrinolysis both by plasmin and neutrophil elastase. Surgery, 2011, 149(2):221-230. |
33. | 翁渝国. 微创心脏外科的进展. 中国胸心血管外科临床杂志,2005, 12(4):232-233. |
34. | Goldstone AB, Atluri P, Szeto WY, et al. Minimally invasive approach provides at least equivalent results for surgical correction of mitral regurgitation:a propensity-matched comparison. J Thorac Cardio vasc Surg, 2013, 145(3):748-756. |
35. | Mcclure RS, Athanasopoulos LV, Mcgurk S, et al. One thousand minimally invasive mitral valve operations:early outcomes, late outcomes, and echocardiographic follow-up. J Thorac Cardiovasc Surg, 2013, 145(5):1199-1206. |
36. | Borgermann J, Jategaonkar S, Haas N, et al. Hybrid operation theatre from the point of view of cardiac surgery. The future for the heart team. Chirurg, 2013, 84(12):1022-1029. |
37. | Riedel B, Browne K, Silbert B. Cerebral protection:inflammation, endothelial dysfunction, and postoperative cognitive dysfunction. Curr Opin Anaesthesiol, 2014, 27(1):89-97. |
38. | Song J, Park J, Kim J Y, et al. Effect of ulinastatin on perioperative organ function and systemic inflammatory reaction during cardiac surgery:a randomized double-blinded study. Korean J Anesthesiol, 2013, 64(4):334-340. |
39. | 周燕萍, 史珍英,蔡及明,等. 乌司他丁对法洛四联症患者围术期肝、肾功能的保护作用. 中国胸心血管外科临床杂志, 2008, 15(1):21-25. |
40. | 石佳,杨玲,吕红,等. 乌司他丁对体外循环心脏围术期患者 NE、WBC、SIRS评分的影响. 山东医药, 2012, 52(17):65-67. |
41. | Cappabianca G, Rotunno C, de Luca TSL, et al. Protective effects of steroids in cardiac surgery:a meta-analysis of randomized doubleblind trials. J Cardiothorac Vasc Anesth, 2011, 25(1):156-165. |
42. | Scrascia G, Rotunno C, Guida P, et al. Perioperative steroids administration in pediatric cardiac surgery:a meta-analysis of randomized controlled trials. Pediatr Crit Care Med, 2014, 15(5):435-442. |
43. | Heying R, Wehage E, Schumacher K, et al. Dexamethasone pretreatment provides antiinflammatory and myocardial protection in neonatal arterial switch operation. Ann Thorac Surg, 2012, 93(3):869-876. |
44. | Slater JP, Guarino T, Stack J, et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg, 2009, 87(1):36-45. |
45. | Bouzat P, Sala N, Payen JF, et al. Beyond intracranial pressure:optimization of cerebral blood flow, oxygen, and substrate delivery after traumatic brain injury. Ann Intensive Care, 2013, 3(1):23. |
46. | Biancari F, Rimpilainen R. Meta-analysis of randomised trials comparing the effectiveness of miniaturised versus conventional cardiopulmonary bypass in adult cardiac surgery. Heart, 2009, 95(12):964-969. |
47. | Eisses MJ, Velan T, Aldea GS, et al. Strategies to reduce hemostatic activation during cardiopulmonary bypass. Thromb Res, 2006, 117(6):689-703. |
48. | 张振,王武军,王振康. 法洛四联症患者围手术期凝血功能变化及意义. 中国胸心血管外科临床杂志, 2009, 16(3):244-245. |
- 1. Bruggemans EF. Cognitive dysfunction after cardiac surgery:pathophysiological mechanisms and preventive strategies. Neth Heart J, 2013, 21(2):70-73.
- 2. van Harten AE, Scheeren TW, Absalom AR. A review of postoperative cognitive dysfunction and neuroinflammation associated with cardiac surgery and anaesthesia. Anaesthesia, 2012, 67(3):280-293.
- 3. 王海滨, 于布为. 术后认知功能障碍的研究进展. 麻醉与监护论坛, 2011, 18(6):429-430.
- 4. Evered L, Scott D A, Silbert B, et al. Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesth Analg, 2011, 112(5):1179-1185.
- 5. Coburn M, Fahlenkamp A, Zoremba N, et al. Postoperative cognitive dysfunction:Incidence and prophylaxis. J Anaesthesist, 2010, 59(2):177-185.
- 6. Bartels K, Mcdonagh DL, Newman MF, et al. Neurocognitive outcomes after cardiac surgeryJ. Curr Opin Anaesthesiol, 2013, 26(1):91-97.
- 7. Tarakji KG, Sabik JR, Bhudia SK, et al. Temporal onset, risk factors, and outcomes associated with stroke after coronary artery bypass grafting. JAMA, 2011, 305(4):381-390.
- 8. 楼松, 丁凡, 龙村, 等. 影响婴儿心脏手术后近期预后的危险因素分析. 中国胸心血管外科临床杂志, 2011, 18(3):222-226.
- 9. Selnes OA, Gottesman RF, Grega MA, et al. Cognitive and neurologic outcomes after coronary-artery bypass surgery. N Engl J Med, 2012, 366(3):250-257.
- 10. Sun X, Lindsay J, Monsein LH, et al. Silent brain injury after cardiac surgery:a review:cognitive dysfunction and magnetic resonance imaging diffusion-weighted imaging findings. J Am Coll Cardiol, 2012, 60(9):791-797.
- 11. Heringlake M, Garbers C, Kabler JH, et al. Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology, 2011, 114(1):58-69.
- 12. Lyman M, Lloyd DG, Ji X, et al. Neuroinflammation:The role and consequences. Neurosci Res, 2014, 79:1-12.
- 13. 侯晓彬, 肖明第. 全身炎症反应综合征与体外循环. 中国体外循环杂志, 2004, 2(2):119-121.
- 14. Widmann CN, Heneka MT. Long-term cerebral consequences of sepsis. Lancet Neurol, 2014, 13(6):630-636.
- 15. Vacas S, Degos V, Feng X, et al. The neuroinflammatory response of postoperative cognitive decline. Br Med Bull, 2013, 106:161-178.
- 16. Barrientos RM, Hein AM, Frank MG, et al. Intracisternal interleukin-1 receptor antagonist prevents postoperative cognitive decline and neuroinflammatory response in aged rats. J Neurosci, 2012, 32(42):14641-14648.
- 17. Cibelli M, Fidalgo AR, Terrando N, et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol, 2010, 68(3):360-368.
- 18. Hudetz JA, Gandhi SD, Iqbal Z, et al. Elevated postoperative inflammatory biomarkers are associated with short-and mediumterm cognitive dysfunction after coronary artery surgery. J Anesth, 2011, 25(1):1-9.
- 19. Porhomayon J, Kolesnikov S, Nader ND. The Impact of stress hormones on post-traumatic stress disorders symptoms and memory in cardiac surgery patients. J Cardiovasc Thorac Res, 2014, 6(2):79-84.
- 20. Lupien SJ, Maheu F, Tu M, et al. The effects of stress and stress hormones on human cognition:Implications for the field of brain and cognition. Brain Cogn, 2007, 65(3):209-237.
- 21. Fang Q, Qian X, An J, et al. Higher dose dexamethasone increases early postoperative cognitive dysfunction. J Neurosurg Anesthesiol, 2014, 26(3):220-225.
- 22. Mu DL, Li LH, Wang DX, et al. High postoperative serum cortisol level is associated with increased risk of cognitive dysfunction early after coronary artery bypass graft surgery:a prospective cohort study. PLoS One, 2013, 8(10):e77637.
- 23. Jespersen SN, Ostergaard L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab, 2012, 32(2):264-277.
- 24. Newman MF, Kramer D, Croughwell ND, et al. Differential age effects of mean arterial pressure and rewarming on cognitive dysfunction after cardiac surgery. Anesth Analg, 1995, 81(2):236-242.
- 25. Kadoi Y, Saito S, Fujita N, et al. Effects of balloon-induced pulsatile perfusion on postoperative short-and long-term cognitive dysfunction in diabetic patients with impaired cerebrovascular carbon dioxide reactivity. J Cardiothorac Vasc Anesth, 2013, 27(2):238-244.
- 26. Ono M, Brady K, Easley RB, et al. Duration and magnitude of blood pressure below cerebral autoregulation threshold during cardiopulmonary bypass is associated with major morbidity and operative mortality. J Thorac Cardiovasc Surg, 2014, 147(1):483-489.
- 27. de la Torre JC. Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc Psychiatry Neurol, 2012, 2012:367516.
- 28. Joshi B, Brady K, Lee J, et al. Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonary bypass and its potential association with stroke. Anesth Analg, 2010, 110(2):321-328.
- 29. Nathan HJ, Rodriguez R, Wozny D, et al. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass:five-year follow-up of a randomized trial. J Thorac Cardiovasc Surg, 2007, 133(5):1206-1211.
- 30. Sniecinski RM, Chandler WL. Activation of the hemostatic system during cardiopulmonary bypass. Anesth Analg, 2011, 113(6):1319-1333.
- 31. Yavari M, Becker RC. Coagulation and fibrinolytic protein kinetics in cardiopulmonary bypass. J Thromb Thrombolysis, 2009, 27(1):95-104.
- 32. Hayakawa M, Sawamura A, Gando S, et al. Disseminated intravascular coagulation at an early phase of trauma is associated with consumption coagulopathy and excessive fibrinolysis both by plasmin and neutrophil elastase. Surgery, 2011, 149(2):221-230.
- 33. 翁渝国. 微创心脏外科的进展. 中国胸心血管外科临床杂志,2005, 12(4):232-233.
- 34. Goldstone AB, Atluri P, Szeto WY, et al. Minimally invasive approach provides at least equivalent results for surgical correction of mitral regurgitation:a propensity-matched comparison. J Thorac Cardio vasc Surg, 2013, 145(3):748-756.
- 35. Mcclure RS, Athanasopoulos LV, Mcgurk S, et al. One thousand minimally invasive mitral valve operations:early outcomes, late outcomes, and echocardiographic follow-up. J Thorac Cardiovasc Surg, 2013, 145(5):1199-1206.
- 36. Borgermann J, Jategaonkar S, Haas N, et al. Hybrid operation theatre from the point of view of cardiac surgery. The future for the heart team. Chirurg, 2013, 84(12):1022-1029.
- 37. Riedel B, Browne K, Silbert B. Cerebral protection:inflammation, endothelial dysfunction, and postoperative cognitive dysfunction. Curr Opin Anaesthesiol, 2014, 27(1):89-97.
- 38. Song J, Park J, Kim J Y, et al. Effect of ulinastatin on perioperative organ function and systemic inflammatory reaction during cardiac surgery:a randomized double-blinded study. Korean J Anesthesiol, 2013, 64(4):334-340.
- 39. 周燕萍, 史珍英,蔡及明,等. 乌司他丁对法洛四联症患者围术期肝、肾功能的保护作用. 中国胸心血管外科临床杂志, 2008, 15(1):21-25.
- 40. 石佳,杨玲,吕红,等. 乌司他丁对体外循环心脏围术期患者 NE、WBC、SIRS评分的影响. 山东医药, 2012, 52(17):65-67.
- 41. Cappabianca G, Rotunno C, de Luca TSL, et al. Protective effects of steroids in cardiac surgery:a meta-analysis of randomized doubleblind trials. J Cardiothorac Vasc Anesth, 2011, 25(1):156-165.
- 42. Scrascia G, Rotunno C, Guida P, et al. Perioperative steroids administration in pediatric cardiac surgery:a meta-analysis of randomized controlled trials. Pediatr Crit Care Med, 2014, 15(5):435-442.
- 43. Heying R, Wehage E, Schumacher K, et al. Dexamethasone pretreatment provides antiinflammatory and myocardial protection in neonatal arterial switch operation. Ann Thorac Surg, 2012, 93(3):869-876.
- 44. Slater JP, Guarino T, Stack J, et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg, 2009, 87(1):36-45.
- 45. Bouzat P, Sala N, Payen JF, et al. Beyond intracranial pressure:optimization of cerebral blood flow, oxygen, and substrate delivery after traumatic brain injury. Ann Intensive Care, 2013, 3(1):23.
- 46. Biancari F, Rimpilainen R. Meta-analysis of randomised trials comparing the effectiveness of miniaturised versus conventional cardiopulmonary bypass in adult cardiac surgery. Heart, 2009, 95(12):964-969.
- 47. Eisses MJ, Velan T, Aldea GS, et al. Strategies to reduce hemostatic activation during cardiopulmonary bypass. Thromb Res, 2006, 117(6):689-703.
- 48. 张振,王武军,王振康. 法洛四联症患者围手术期凝血功能变化及意义. 中国胸心血管外科临床杂志, 2009, 16(3):244-245.