1. |
Goubergrits L, Affeld K. Numerical estimation of blood damage in artificial organs. Artif Organs, 2004, 28(5): 499-507.
|
2. |
Arvand A, Hormes M, Reul H. A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump. Artif Organs, 2005, 29(7): 531-540.
|
3. |
Heilmann C, Geisen U, Benk C, et al. Hemolysis in patients with ventricular assist devices: major differences between systems. Eur J Cardiothorac Surg, 2009, 36(3): 580-584.
|
4. |
Giersiepen M, Wurzinger LJ, Opitz R, et al. Estimation of shear stress-related blood damage in heart valve prostheses--in vitro comparison of 25 aortic valves. Int J Artif Organs, 1990, 13(5): 300.
|
5. |
Watanabe N, Masuda T, Iida T, et al. Quantification of the secondary flow in a radial coupled centrifugal blood pump based on particle tracking velocimetry. Artif Organs, 2005, 29(1): 26-35.
|
6. |
Rose EA, Gelijins AC, Moskowitz AJ, et al. Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med, 2001, 345(20): 1435-1443.
|
7. |
Takatani S, Hoshi H, Tajima K, et al. Feasibility of a miniature centrifugal rotary blood pump for low-flow circulation in children and infants. ASAIO J, 2005, 51(5): 557-562.
|
8. |
Duncan BW, Dudzinski DT, Noecker AM, et al. The pedipump: development status of a new pediatric ventricular assist device. ASAIO J, 2005, 51(5): 536-539.
|
9. |
Menon PG, Antaki JF, Undar A, et al. Aortic outflow cannula tip design and orientation impacts cerebral perfusion during pediatric cardiopulmonary bypass procedures. Ann Biomed Eng, 2013, 41 (12): 2588-2602.
|
10. |
Kaufmann TA, Schlanstein P, Moritz A, et al. Development of a hemodynamically optimized outflow cannula for cardiopulmonary bypass. Artif Organs, 2014, 38(11): 972-978.
|
11. |
Neidlin M, Jansen S, Moritz AU, et al. Design modifications and computational fluid dynamic analysis of an outflow cannula for cardiopulmonary bypass. Ann Biomed Eng, 2014, 42(10): 1-10.
|
12. |
Avrahami I, Dilmoney B, Azuri A, et al. Investigation of risks for cerebral embolism associated with the hemodynamics of cardiopulmonary bypass cannula: a numerical model. Artif Organs, 2013, 37(10): 857-865.
|
13. |
Karmonik C, Partovi S, Loebe M, et al. Influence of LVAD cannula outflow tract location on hemodynamics in the ascending aorta: a patient-specific computational fluid dynamics approach. ASAIO J, 2012, 58(6): 562-567.
|
14. |
Takao H, Murayama Y, Otsuka S, et al. Hemodynamic differences between unruptured and ruptured intracranial aneurysms during observation. Stroke, 2012, 43(5): 1436-1439.
|
15. |
Chandra S, Raut SS, Jana A, et al. Fluid-structure interaction modelling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling. J Biomechan Engin, 2013, 135(8): 81001.
|
16. |
Reymond P, Crosetto P, Deparis S, et al. Physiological simulation of blood flow in the aorta: Comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med Eng Phys, 2013, 35(6): 784-791.
|
17. |
Inci G, Sorguven E. Effect of LVAD outlet graft anastomosis angle on the aortic valve, wall, and flow. ASAIO J, 2012, 58(4): 373-381.
|