1. |
Mokra D, Kosutova P. Biomarkers in acute lung injury. Respir Physiol Neurobiol, 2015, 209: 52-58.
|
2. |
Barreira ER, Munoz GO, Cavalheiro PO, et al. Epidemiology and outcomes of acute respiratory distress syndrome in children according to the Berlin definition: a multicenter prospective study. Crit Care Med, 2015, 43(5):947-953.
|
3. |
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA, 2012 , 307(23): 2526-2533.
|
4. |
郭帅, 曾志勇, 杨胜生, 等. 骨髓间充质干细胞对海水淹溺致急性肺损伤治疗作用的研究进展. 中国胸心血管外科临床杂志, 2015, 22(4): 375-379.
|
5. |
Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury. N Engl J Med, 2005, 353(16): 1685-1693.
|
6. |
Yehya N, Servaes S, Thomas NJ. Characterizing degree of lung injury in pediatric acute respiratory distress syndrome. Crit Care Med, 2015, 43(5): 937-946.
|
7. |
Abraham E. Neutrophils and acute lung injury. Crit Care Med, 2003, 31(4): 195-199.
|
8. |
Mullen PG, Windsor AC, Walsh CJ, et al. Combined ibuprofen and monoclonal antibody to tumor necrosis factor-alpha attenuate hemodynamic dysfunction and sepsis-induced acute lung injury. J Trauma, 1993, 34(5): 612-620.
|
9. |
Flierl MA, Rittirsch D, Nadeau BA, et al. Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature, 2007, 449: 721-725.
|
10. |
Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med, 1994, 149(3): 818-824.
|
11. |
杜斌. 急性呼吸窘迫综合征的柏林定义: 究竟改变了什么? 首都医科大学学报, 2013, 34(2): 201-203.
|
12. |
俞森洋. 对急性呼吸窘迫综合征诊断新标准(柏林定义)的解读和探讨. 中国呼吸与危重监护杂志, 2013, 12(2): 1-4.
|
13. |
Perkins GD, Gates S, Park D, et al. The Beta agonist lung injury trial prevention. A randomized controlled trial. Am J Respir Crit Care Med, 2014, 189(6): 674-683.
|
14. |
Van Ness M, Jensen H, Adamson GN. Neutrophils contain cholesterol crystals in transfusion-related acute lung injury (TRALI). Am J Clin Pathol, 2013, 140(2): 170-176.
|
15. |
Ota C, Ishizawa K, Yamada M, et al. Receptor for advanced glycation end products expressed on alveolar epithelial cells is the main target for hyperoxia-induced lung injury. Respir Investig, 2016, 54(2): 98-108.
|
16. |
Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med, 2000, 342(18): 1334-1349.
|
17. |
Harada C, Kawaguchi T, Ogata-Suetsugu S, et al. EGFR tyrosine kinase inhibition worsens acute lung injury in mice with repairing airway epithelium. Am J Respir Crit Care Med, 2011, 183(6): 743-751.
|
18. |
Chignalia AZ, Vogel SM, Reynolds AB, et al. p120-catenin expressed in alveolar type II cells is essential for the regulation of lung innate immune response. Am J Pathol, 2015, 185(5): 1251-1263.
|
19. |
Sugita M, Berthiaume Y, VanSpall M, et al. Pharmacologic modulation of alveolar liquid clearance in transplanted lungs by phentolamine and FK506. Ann Thorac Surg, 2009, 88(3): 958-964.
|
20. |
Ghaedi M, Calle EA, Mendez JJ, et al. Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest, 2013, 123(11): 4950-4962.
|
21. |
Grainge CL, Davies DE. Epithelial injury and repair in airways diseases. Chest, 2013, 144(6): 1906-1912.
|
22. |
Liu G, Bi Y, Wang R, Shen B, et al. Kinase AKT1 negatively controls neutrophil recruitment and function in mice. J Immunol, 2013, 191(5): 2680-2690.
|
23. |
Gill SE, Huizar I, Bench EM, et al. Tissue inhibitor of metalloproteinases 3 regulates resolution of inflammation following acute lung injury. Am J Pathol, 2010, 176(1): 64-73.
|
24. |
Wang L, Taneja R, Razavi HM, et al. Specific role of neutrophil inducible nitric oxide synthase in murine sepsis-induced lung injury in vivo. Shock, 2012, 37(5): 539-547.
|
25. |
Rassaf T, Weber C, Bernhagen J. Macrophage migration inhibitory factor in myocardial ischemia/reperfusion injury. Cardiovasc Res, 2014, 102(2): 321-328.
|
26. |
Xing J, Yakubov B, Poroyko V, et al. Opposite effects of ANP receptors in attenuation of LPS-induced endothelial permeability and lung injury. Microvasc Res, 2012, 83(2): 194-199.
|
27. |
Schreiber T, Hueter L, Gaser E, et al. Effects of a catecholamine-induced increase in cardiac output on lung injury after experimental unilateral pulmonary acid instillation. Crit Care Med, 2007, 35(7): 1741-1748.
|
28. |
Pineda Pompa LR, Barrera-Ramírez CF, Martínez-Valdez J, et al. Pheochromocytoma-induced acute pulmonary edema and reversible catecholamine cardiomyopathy mimicking acute myocardial infarction. Rev Port Cardiol, 2004, 23(4): 561-568.
|
29. |
Mori A, Hanada M, Sakamoto K, et al. Noradrenaline contracts rat retinal arterioles via stimulation of α(1A)- and α(1D)-adrenoceptors. Eur J Pharmacol, 2011, 673(1-3): 65-69.
|
30. |
Rassler B. The role of catecholamines in formation and resolution of pulmonary oedema. Cardiovasc Hematol Disord Drug Targets, 2007, 7(1): 27-35.
|
31. |
Rassler B. Role of α- and β-adrenergic Mechanisms in the pathogenesis of pulmonary injuries characterized by edema, inflammation and fibrosis. Cardiovasc Hematol Disord Drug Targets, 2013, 13(3): 197-207.
|
32. |
Cox SS, Speaker KJ, Beninson LA. Adrenergic and glucocorticoid modulation of the sterile inflammatory response. Brain Behav Immun, 2014, 36: 183-192.
|
33. |
Swanson MA, Lee WT, Sanders VM. IFN-gamma production by Th1 cells generated from naive CD4+ T cells exposed to norepinephrine. J Immunol, 2001, 166(1): 232-240.
|
34. |
Shah D, Romero F, Stafstrom W, et al. Extracellular ATP mediates the late phase of neutrophil recruitment to the lung in murine models of acute lung injury. Am J Physiol Lung Cell Mol Physiol, 2014, 306(2): 152-161.
|
35. |
Morken JJ, Warren KU, Xie Y, et al. Epinephrine as a mediator of pulmonary neutrophil sequestration. Shock, 2002, 18(1): 46-50.
|
36. |
Parks KR, Davis JM. Epinephrine, cortisol, endotoxin, nutrition, and the neutrophil. Surg Infect, 2012, 13: 300-306.
|
37. |
Asti C, Ruggieri V, Porzio S, et al. Lipopolysaccharide-induced lung injury in mice. I. Concomitant evaluation of inflammatory cells and haemorrhagic lung damage. Pulm Pharmacol Ther, 2000, 13(2): 61-69.
|
38. |
Flierl M, Rittirsch D, Nadeau B, et al. Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response. PLoS One, 2009, 4(2): e4414.
|
39. |
Briggs GD, Bulley J, Dickson PW. Catalytic domain surface residues mediating catecholamine inhibition in tyrosine hydroxylase. J Biochem, 2014, 155(3): 183-193.
|
40. |
Rotoli G, Grignol G, Hu W, et al. Catecholaminergic axonal varicosities appear to innervate growth hormone-releasing hormone- immunoreactive neurons in the human hypothalamus: the possible morphological substrate of the stress-suppressed growth. J Clin Endocrinol Metab, 2011, 96(10): E1606-1611.
|
41. |
Kambur O, Kaunisto MA, Tikkanen E, et al. Effect of catechol-o-methyltransferase-gene(COMT) variants on experimental and acute postoperative pain in 1, 000 women undergoing surgery for breast cancer. Anesthesiology, 2013, 119(6): 1422-1433.
|
42. |
Flierl MA, Rittirsch D, Sarma JV, et al. Adrenergic regulation of complement-induced acute lung injury. Adv Exp Med Biol, 2008, 632: 93-103.
|
43. |
Engler KL, Rudd ML, Ryan JJ, et al. Autocrine actions of macrophage-derived catecholamines on interleukin-1 beta. J Neuroimmunol, 2005, 160(1-2): 87-91.
|
44. |
Weinstein LI, Revuelta A, Pando RH. Catecholamines and acetylcholine are key regulators of the interaction between microbes and the immune system. Ann N Y Acad Sci, 2015, 1351: 39-51.
|
45. |
Ji MH, Zhu XL, Liu FF, et al. Alpha 2A-adrenoreceptor blockade improves sepsis-induced acute lung injury accompanied with depressed high mobility group box-1 levels in rats. Cytokine, 2012, 60(3): 639-645.
|