1. |
Xu C, Police S, Rao N, et al. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res, 2002, 91(6):501-508.
|
2. |
Boheler KR, Czyz J, Tweedie D, et al. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res, 2002, 91(3):189-201.
|
3. |
Caspi O, Huber I, Kehat I, et al. Transplantation of human embr-yonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol, 2007, 50 (19):1884-1893.
|
4. |
Fernandes S, Naumova AV, Zhu WZ, et al. Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats. J Mol Cell Cardiol, 2010, 49(6):941-949.
|
5. |
Matar AA, Chong JJ. Stem cell therapy for cardiac dysfunction.Springerplus, 2014, 3:440.
|
6. |
Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell:entity or function? Cell, 2001, 105(7):829-841.
|
7. |
Fu JD, Srivastava D. Direct reprogramming of fibroblasts into cardiomyocytes for cardiac regenerative medicine. Circ J, 2015, 79(2):245-254.
|
8. |
Boheler KR, Czyz J, Tweedie D, et al. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res, 2002, 91(3):189-201.
|
9. |
Jasmin D, Spray C, Campos DC, et al. Chemical induction of cardiac differentiation in p19 embryonal carcinoma stem cells. Stem Cells Dev, 2010, 19(3):403-412.
|
10. |
Wu YJ, Chen SY, Chang SJ, et al. Enhanced differentiation of rat MSCs into cardiomyocytes with 5-azacytidine/collagen I nano-molecules. Conf Proc IEEE Eng Med Biol Soc, 2013, 2013:322-325.
|
11. |
Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 2004, 20:781-810.
|
12. |
Ross SE, Hemati N, Longo KA, et al. Inhibition of adipogenesis by Wnt signaling. Science, 2000, 289(5481):950-953.
|
13. |
Moon RT, Kohn AD, De Ferrari GV, et al. WNT and beta-catenin signalling:diseases and therapies. Nat Rev Genet, 2004, 5(9):691-701.
|
14. |
Kuhl M, Geis K, Sheldahl LC, et al. Antagonistic regulation of convergent extension movements in Xenopus by Wnt/beta-catenin and Wnt/Ca2+ signaling. Mech Dev, 2001, 106(1-2):61-76.
|
15. |
Maye P, Zheng J, Li L, et al. Multiple mechanisms for Wnt11-mediated repression of the canonical Wnt signaling pathway. J Biol Chem, 2004, 279(23):24659-24665.
|
16. |
Eisenberg LM, Eisenberg CA. Wnt signal transduction and the formation of the myocardium. Dev Biol, 2006, 293(2):305-315.
|
17. |
Nakamura T, Sano M, Song YZ, et al. A Wnt and beta-catenin-dependent pathway for mammalian cardiac myogenesis. Proc Natl Acad Sci USA, 2003, 100(10):5834-5839.
|
18. |
Naito AT, Akazawa H, Takano H, et al. Phosphatidylinositol 3-kinase-Akt pathway plays a critical role in early cardiomyogenesis by regu-lating canonical Wnt signaling. Circ Res, 2005, 97(2):144-151.
|
19. |
高胜利. Wnt3a在胚胎干细胞向心肌细胞分化过程中的作用. 郑州:郑州大学, 2007.
|