1. |
Gutsche JT, Ghadimi K, Patel PA, et al. New frontiers in aortic therapy: focus on deep hypothermic circulatory arrest. J Cardiothorac Vasc Anesth, 2014, 28(4): 1159-1163.
|
2. |
Grenz A, Eltzschig HK. Mast cells and intestinal injury: a novel link between hypoxia and inflammation. Crit Care Med, 2013, 41(9): 2246-2248.
|
3. |
Cooper WA, Duarte IG, Thourani VH, et al. Hypothermic circulatory arrest causes multisystem vascular endothelial dysfunction and apoptosis. Ann Thorac Surg, 2000, 69(3): 696-702.
|
4. |
Yang MQ, Ma YY, Ding J, et al. The role of mast cells in ischemia and reperfusion injury. Inflamm Res, 2014, 63(11): 899-905.
|
5. |
Di Marco L, Murana G, Leone A, et al. Con-debate: short circulatory arrest times in arch reconstructive surgery: is simple retrograde cerebral perfusion or hypothermic circulatory arrest as good or better than complex antegrade cerebral perfusion for open distal involvement or hemi-arch. J Vis Surg, 2018, 4: 46.
|
6. |
Etz CD, Luehr M, Kari FA, et al. Selective cerebral perfusion at 28 degrees C--is the spinal cord safe? Eur J Cardiothorac Surg, 2009, 36(6): 946-955.
|
7. |
Juremalm M, Olsson N, Nilsson G. Selective CCL5/RANTES-induced mast cell migration through interactions with chemokine receptors CCR1 and CCR4. Biochem Biophys Res Commun, 2002, 297(3): 480-485.
|
8. |
Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol, 2011, 12(11): 1035-1044.
|
9. |
Anand P, Singh B, Jaggi AS, et al. Mast cells: an expanding pathophysiological role from allergy to other disorders. Naunyn Schmiedebergs Arch Pharmacol, 2012, 385(7): 657-670.
|
10. |
刘东方, 张春光, 吴健民. 肥大细胞脱颗粒机制研究进展. 国外医学(临床生物化学与检验学分册), 2004, 25(2): 137-139.
|
11. |
Amin K. The role of mast cells in allergic inflammation. Respir Med, 2012, 106(1): 9-14.
|
12. |
Yu Y, Blokhuis BR, Garssen J, et al. Non-IgE mediated mast cell activation. Eur J Pharmacol, 2016, 778: 33-43.
|
13. |
Bischoff SC. Physiological and pathophysiological functions of intestinal mast cells. Semin Immunopathol, 2009, 31(2): 185-205.
|
14. |
Karhausen J, Qing M, Gibson A, et al. Intestinal mast cells mediate gut injury and systemic inflammation in a rat model of deep hypothermic circulatory arrest. Crit Care Med, 2013, 41(9): e200-e210.
|
15. |
Tsunooka N, Maeyama K, Hamada Y, et al. Bacterial translocation secondary to small intestinal mucosal ischemia during cardiopulmonary bypass. Measurement by diamine oxidase and peptidoglycan. Eur J Cardiothorac Surg, 2004, 25(2): 275-280.
|
16. |
Solligård E, Wahba A, Skogvoll E, et al. Rectal lactate levels in endoluminal microdialysate during routine coronary surgery. Anaesthesia, 2007, 62(3): 250-258.
|
17. |
Zarins CK, Skinner DB. Circulation in profound hypothermia. J Surg Res, 1973, 14(2): 97-104.
|
18. |
Jakob SM. Splanchnic blood flow in low-flow states. Anesth Analg, 2003, 96(4): 1129-1138.
|
19. |
Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation. N Engl J Med, 2012, 367(24): 2322-2333.
|
20. |
Kats S, Schönberger JP, Brands R, et al. Endotoxin release in cardiac surgery with cardiopulmonary bypass: pathophysiology and possible therapeutic strategies. An update. Eur J Cardiothorac Surg, 2011, 39(4): 451-458.
|
21. |
Efthymiou CA, Weir WI. Salmonella sepsis simulating gastrointestinal ischaemia following cardiopulmonary bypass. Interact Cardiovasc Thorac Surg, 2011, 12(2): 334-336.
|
22. |
Deitch EA. Gut lymph and lymphatics: a source of factors leading to organ injury and dysfunction. Ann N Y Acad Sci, 2010, 1207 Suppl 1: E103-E111.
|
23. |
Boros M. Microcirculatory dysfunction during intestinal ischemia-reperfusion. Acta Physiol Hung, 2003, 90(4): 263-279.
|
24. |
Deitch EA. Gut-origin sepsis: evolution of a concept. Surgeon, 2012, 10(6): 350-356.
|
25. |
Kuehn HS, Gilfillan AM. G protein-coupled receptors and the modification of FcepsilonRI-mediated mast cell activation. Immunol Lett, 2007, 113(2): 59-69.
|
26. |
Suzuki Y, Yoshimaru T, Inoue T, et al. Role of oxidants in mast cell activation. Chem Immunol Allergy, 2005, 87: 32-42.
|
27. |
Murray DB, Gardner JD, Brower GL, et al. Endothelin-1 mediates cardiac mast cell degranulation, matrix metalloproteinase activation, and myocardial remodeling in rats. Am J Physiol Heart Circ Physiol, 2004, 287(5): H2295-H2299.
|
28. |
Rork TH, Wallace KL, Kennedy DP, et al. Adenosine A2A receptor activation reduces infarct size in the isolated, perfused mouse heart by inhibiting resident cardiac mast cell degranulation. Am J Physiol Heart Circ Physiol, 2008, 295(5): H1825-H1833.
|
29. |
Zimmermann H. Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol, 2000, 362(4-5): 299-309.
|
30. |
Venkatesha RT, Berla Thangam E, Zaidi AK, et al. Distinct regulation of C3a-induced MCP-1/CCL2 and RANTES/CCL5 production in human mast cells by extracellular signal regulated kinase and PI3 kinase. Mol Immunol, 2005, 42(5): 581-587.
|
31. |
Lin L, Bankaitis E, Heimbach L, et al. Dual targets for mouse mast cell protease-4 in mediating tissue damage in experimental bullous pemphigoid. J Biol Chem, 2011, 286(43): 37358-37367.
|
32. |
Overman EL, Rivier JE, Moeser AJ. CRF induces intestinal epithelial barrier injury via the release of mast cell proteases and TNF-α. PLoS One, 2012, 7(6): e39935.
|
33. |
Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol, 2009, 1(2): a002584.
|
34. |
Odenwald MA, Turner JR. The intestinal epithelial barrier: a therapeutic target? Nat Rev Gastroenterol Hepatol, 2017, 14(1): 9-21.
|
35. |
Blikslager AT, Moeser AJ, Gookin JL, et al. Restoration of barrier function in injured intestinal mucosa. Physiol Rev, 2007, 87(2): 545-564.
|
36. |
Shen L, Weber CR, Raleigh DR, et al. Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol, 2011, 73: 283-309.
|
37. |
Marchiando AM, Shen L, Graham WV, et al. Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J Cell Biol, 2010, 189(1): 111-126.
|
38. |
Li S, Guan J, Ge M, et al. Intestinal mucosal injury induced by tryptase-activated protease-activated receptor 2 requires β-arrestin-2 in vitro. Mol Med Rep, 2015, 12(5): 7181-7187.
|
39. |
Liu D, Gan X, Huang P, et al. Inhibiting tryptase after ischemia limits small intestinal ischemia-reperfusion injury through protease-activated receptor 2 in rats. J Trauma Acute Care Surg, 2012, 73(5): 1138-1144.
|
40. |
Gan X, Xing D, Su G, et al. Propofol attenuates small intestinal ischemia reperfusion injury through inhibiting NADPH oxidase mediated mast cell activation. Oxid Med Cell Longev, 2015, 2015: 167014.
|