1. |
Rosendaal FR, Cannegieter SC, Fj VDM, et al. A method to determine the optimal intensity of oral anticoagulant therapy. Thromb Haemost, 1993, 69(3): 236-239.
|
2. |
Pengo V, Pegoraro C, Cucchini U, et al. Worldwide management of oral anticoagulant therapy: the ISAM study. J Thromb Thrombolysis, 2006, 21(1): 73-77.
|
3. |
Shalev V, Rogowski O, Shimron O, et al. The interval between prothrombin time tests and the quality of oral anticoagulants treatment in patients with chronic atrial fibrillation. Thromb Res, 2007, 120(2): 201-206.
|
4. |
Grzymala B. Mechanical heart valve prosthesis and warfarin – Treatment quality and prognosis. Thromb Res, 2014, 133(5): 795-798.
|
5. |
Meijer K, Kim YK, Schulman S. Decreasing warfarin sensitivity during the first three months after heart valve surgery: implications for dosing. Thromb Res, 2010, 125(3): 224-229.
|
6. |
Tekkesin AI, Cakilli Y, Turkkan C, et al. OP-005 Assessment of warfarin TTR (time in therapeutic range ) results in a tertiary reference center. Am J Cardiol, 2015, 115: S2-S3.
|
7. |
Rieder MJ, Reiner AP, Gage BF, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med, 2005, 352(22): 2285-2293.
|
8. |
Hirsh J, Fuster V, Ansell J, et al. American Heart Association/American College of Cardiology Foundation guide to warfarin therapy 1. J Am Coll Cardiol, 2003, 41(9): 1633-1652.
|
9. |
Gage BF, Lesko LJ. Pharmacogenetics of warfarin: regulatory, scientific, and clinical issues. J Thromb Thrombolysis, 2008, 25(1): 45-51.
|
10. |
Asarcıklı LD, Şen T, İpek EG, et al. Time in therapeutic range (TTR) value of patients who use warfarin and factors which influence TTR. J Am Coll Cardiol, 2013, 62(18): C127-C128.
|
11. |
王晓蕊, 毛静远. 中药影响华法林抗凝作用的研究进展. 中西医结合心脑血管病杂志, 2016, 14(20): 2379-2383.
|
12. |
Schulman S, El Bouazzaoui B, Eikelboom JW, et al. Clinical factors influencing the sensitivity to warfarin when restarted after surgery. J Intern Med, 2008, 263(4): 412-419.
|
13. |
Valentin II, Vazquez J, Rivera-Miranda G, et al. Prediction of warfarin dose reductions in Puerto Rican patients, based on combinatorial CYP2C9 and VKORC1 genotypes. Ann Pharmacother, 2012, 46(2): 208-218.
|
14. |
谭胜蓝, 周新民, 李智, 等. 华法林抵抗的诊断及处理. 中南大学学报:医学版, 2013, 38(3): 313-317.
|
15. |
Wadelius M, Chen LY, Lindh JD, et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood, 2009, 113(4): 784-792.
|
16. |
Wadelius M, Chen LY, Eriksson N, et al. Association of warfarin dose with genes involved in its action and metabolism. Hum Genet, 2007, 121(1): 23-34.
|
17. |
Nastasi-Catanese JA, Padilla-Gutierrez JR, Valle Y, et al. Genetic contribution of CYP2C9, CYP2C19, and APOE variants in acenocoumarol response. Genet Mol Res, 2013, 12(4): 4413-4421.
|
18. |
肖锡俊, 刘关键, 梁茂植, 等. 机械瓣置换术后患者目标 INR 1.60~2.20 及以每周为单位华法林剂量调整合理性的初步评价. 中国循证医学杂志, 2014, 14(1): 16-20.
|
19. |
Detlef H, Cornelia P, Rito B, et al. Thromboembolic and bleeding complications following St. Jude Medical valve replacement: results of the German Experience with low-intensity anticoagulation study. Chest, 2005, 127(1): 53-59.
|
20. |
Koertke H, Zittermann A, Minami K, et al. Low-dose international normalized ratio self-management: a promising tool to achieve low complication rates after mechanical heart valve replacement. Ann Thorac Surg, 2005, 79(6): 1909-1914.
|
21. |
Kuntze CE, Eijgelaar A, Ebels T, et al. Rates of thromboembolism with three different mechanical heart valve prostheses: randomised study. The Lancet, 1989, 333(8637): 514-517.
|
22. |
Cannegieter S, Rosendaal F, Briet E. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation, 1994, 89(2): 635-641.
|
23. |
Butchart E, Lewis P, Bethel JA, et al. Adjusting anticoagulation to prosthesis thrombogenicity and patient risk factors. recommendations for the medtronic Hall valve. Circulation, 1991, 84(5 Suppl): III61-Ⅲ69.
|
24. |
Butchart E, Lewis P, Kulatilake E, et al. Anticoagulation variability between centres: implications for comparative prosthetic valve assessment. Eur J Cardio-thorac Surg, 1987, 2(2): 72-81.
|
25. |
Samsa GP, Matchar DB. Relationship between test frequency and outcomes of anticoagulation: a literature review and commentary with implications for the design of randomized trials of patient self-management. J Thromb Thrombolysis, 2000, 9(3): 283-292.
|
26. |
Schmitt L, Speckman J, Ansell J. Quality assessment of anticoagulation dose management: comparative evaluation of measures of time-in-therapeutic range. J Thromb Thrombolysis, 2003, 15(3): 213-216.
|
27. |
谢红娟, 付海英, 朱彩凤, 等. 丹参注射液对大鼠体内稳态华法林药动学和药效学参数的影响. 医药导报, 2009, 28(1): 36-39.
|
28. |
Qiu F, Wang G, Zhang R, et al. Effect of danshen extract on the activity of CYP3A4 in healthy volunteers. Br J Clin Pharmacol, 2010, 69(6): 656-662.
|
29. |
Chan T. Interaction between warfarin and danshen (Salvia miltiorrhiza). Ann Pharmacother, 2001, 35(4): 501-504.
|
30. |
Whitlock RP, Sun JC, Fremes SE, et al. Antithrombotic and thrombolytic therapy for valvular disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 2012, 141(2): 1513-1514.
|
31. |
Eriksson N, Wadelius M. Prediction of warfarin dose: why, when and how? Pharmacogenomics, 2012, 13(4): 429-440(412).
|
32. |
Borgiani P, Ciccacci C, Forte V, et al. Allelic variants in the CYP2C9 and VKORC1 loci and interindividual variability in the anticoagulant dose effect of warfarin in Italians. Pharmacogenomics, 2007, 8(11): 1545-1550.
|
33. |
Carlquist JF, Horne BD, Mower C, et al. An evaluation of nine genetic variants related to metabolism and mechanism of action of warfarin as applied to stable dose prediction. J Thromb Thrombolysis, 2010, 30(3): 358-364.
|
34. |
Yoshizawa M, Hayashi H, Tashiro Y. Effect of VKORC1-1639 G>A polymorphism, body weight, age, and serum albumin alterations on warfarin response in Japanese patients. Thromb Res, 2009, 124(2): 161-166.
|
35. |
Teh LK, Langmia IM, Fazleen Haslinda MH, et al. Clinical relevance of VKORC1 (G-1639A and C1173T) and CYP2C9*3 among patients on warfarin. J Clin Pharm Ther, 2012, 37(2): 232-236.
|
36. |
Redman AR. Implications of cytochrome P450 2C9 polymorphism on warfarin metabolism and dosing. Pharmacotherapy, 2001, 21(2): 235-242.
|
37. |
Sagreiya H, Berube C, Wen A, et al. Extending and evaluating a warfarin dosing algorithm that includes CYP4F2 and pooled rare variants of CYP2C9. Pharmacogenetics & Genomics, 2010, 20(7): 407-413.
|
38. |
Wadelius M, Chen L, Downes K, et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J, 2005, 5(4): 262-270.
|
39. |
Gage BF, Eby C, Johnson JA, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther, 2008, 84(3): 326-331.
|