1. |
Simeonov KP, Himmelstein DS. Lung cancer incidence decreases with elevation: evidence for oxygen as an inhaled carcinogen. Peer J, 2015, 3: e705.
|
2. |
Youk AO, Buchanich JM, Fryzek J, et al. An ecological study of cancer mortality rates in high altitude counties of the United States. High Alt Med Biol, 2012, 13(2): 98-104.
|
3. |
Van Pelt WR. Epidemiological associations among lung cancer, radon exposure and elevation above sea level--a reassessment of Cohen’s county level radon study. Health Physics, 2003, 85(4): 397-403.
|
4. |
Boscoe FP, Schymura MJ. Solar ultraviolet-B exposure and cancer incidence and mortality in the United States, 1993-2002. BMC cancer, 2006, 6: 264.
|
5. |
Aceituno-Madera P, Buendia-Eisman A, Olmo FJ, et al. Melanoma, altitude, and UV-B radiation. Actas Dermosifiliogr, 2011, 102(3): 199-205.
|
6. |
陈万青, 孙可欣, 郑荣寿, 等. 2014 年中国分地区恶性肿瘤发病和死亡分析. 中国肿瘤, 2018, 27(1): 1-14.
|
7. |
于跃, 扎西宗吉, 白国霞. 西藏 2014~2015 年恶性肿瘤发病和死亡性别差异分析. 中华疾病控制杂志, 2017, 21(1): 105-106.
|
8. |
Mori-Chavez P, Upton AC, Salazar M, et al. Influence of altitude on late effects of radiation in RF-Un mice: observations on survival time, blood changes, body weight, and incidence of neoplasms. Cancer Res, 1970, 30(4): 913-928.
|
9. |
Mori-Chavez P, Upton AC, Salazar M, et al. Influence of transitory, as compared with permanent, high-altitude exposure on the pathogenesis of spontaneous and X-ray-induced neoplasms in RF-Un mice. Cancer Res, 1974, 34(2): 328-336.
|
10. |
Sung HJ, Ma W, Starost MF, et al. Ambient oxygen promotes tumorigenesis. PloS One, 2011, 6(5): e19785.
|
11. |
Jefferson JA, Simoni J, Escudero E, et al. Increased oxidative stress following acute and chronic high altitude exposure. High Alt Med Biol, 2004, 5(1): 61-69.
|
12. |
Aldashev AA, Kojonazarov BK, Amatov TA, et al. Phosphodiesterase type 5 and high altitude pulmonary hypertension. Thorax, 2005, 60(8): 683-687.
|
13. |
Gasche C, Chang CL, Rhees J, et al. Oxidative stress increases frame shift mutations in human colorectal cancer cells. Cancer Res, 2001, 61(20): 7444-7448.
|
14. |
Askew EW. Work at high altitude and oxidative stress: antioxidant nutrients. Toxicology, 2002, 180(2): 107-119.
|
15. |
Wu T, Kayser B. High altitude adaptation in Tibetans. High Alt Med Biol, 2006, 7(3): 193-208.
|
16. |
Beall CM. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci USA, 2007, 104(Suppl 1): 8655-8660.
|
17. |
Chen QH, Ge RL, Wang XZ, et al. Exercise performance of Tibetan and Han adolescents at altitudes of 3,417 and 4,300 m. J Appl Physiol, (1985), 1997, 83(2): 661-667.
|
18. |
Beall CM. Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia. Integr Comp Biol, 2006, 46(1): 18-24.
|
19. |
Beall CM. Tibetan and Andean patterns of adaptation to high-altitude hypoxia. Hum Biol, 2000, 72(1): 201-228.
|
20. |
陈万青, 邹小农, 李连弟, 等. 西藏自治区恶性肿瘤流行特征. 中国肿瘤, 2005, (6): 364-366.
|
21. |
黎卫平, 陈超, 臧宝彩, 等. 西藏自治区拉萨市 2727 例恶性肿瘤发生顺位分析. 西藏大学学报 (自然科学版), 2011, 26(1): 52-55.
|
22. |
德庆旺姆. 西藏地区藏族人群肺癌临床分析. 西藏科技, 2013, (11): 39-40.
|
23. |
Hayes DP. Cancer protection related to solar ultraviolet radiation, altitude and vitamin D. Med Hypotheses, 2010, 75(4): 378-382.
|
24. |
Bikle DD. Extraskeletal actions of vitamin D. Ann N Y Acad Sci, 2016, 1376(1): 29-52.
|
25. |
Hamra GB, Guha N, Cohen A, et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect, 2014, 122(9): 906-911.
|
26. |
Moen I, Stuhr LE. Hyperbaric oxygen therapy and cancer--a review. Target Oncol, 2012, 7(4): 233-242.
|
27. |
Hatfield SM, Kjaergaard J, Lukashev D, et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Trans Med, 2015, 7(277): 277ra230.
|
28. |
Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer, 2014, 14(11): 709-721.
|
29. |
Murray AJ, Horscroft JA. Mitochondrial function at extreme high altitude. J Physiol, 2016, 594(5): 1137-1149.
|
30. |
Semenza GL, Nejfelt MK, Chi SM, et al. Hypoxia-inducible nuclear factors bind to an enhancer element located 3’ to the human erythropoietin gene. Proc Natl Acad Sci USA, 1991, 88(13): 5680-5684.
|
31. |
Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol, 1992, 12(12): 5447-5454.
|
32. |
Ema M, Taya S, Yokotani N, et al. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA, 1997, 94(9): 4273-4278.
|
33. |
Brown JM. Tumor hypoxia in cancer therapy. Methods Enzymol, 2007, 435: 297-321.
|
34. |
Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev, 2007, 26(2): 225-239.
|
35. |
Zhao J, Du F, Shen G, et al. The role of hypoxia-inducible factor-2 in digestive system cancers. Cell Death Dis, 2015, 6: e1600.
|
36. |
Liu ZJ, Semenza GL, Zhang HF. Hypoxia-inducible factor 1 and breast cancer metastasis. J Zhejiang Univ Sci B, 2015, 16(1): 32-43.
|
37. |
Manalo DJ, Rowan A, Lavoie T, et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood, 2005, 105(2): 659-669.
|
38. |
Wong CC, Zhang H, Gilkes DM, et al. Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. J Mol Med (Berlin, Germany), 2012, 90(7): 803-815.
|
39. |
Lanikova L, Reading NS, Hu H, et al. Evolutionary selected Tibetan variants of HIF pathway and risk of lung cancer. Oncotarget, 2017, 8(7): 11739-11747.
|
40. |
Woolcott OO, Castillo OA, Gutierrez C, et al. Inverse association between diabetes and altitude: a cross-sectional study in the adult population of the United States. Obesity (Silver Spring), 2014, 22(9): 2080-2090.
|
41. |
Woolcott OO, Gutierrez C, Castillo OA, et al. Inverse association between altitude and obesity: A prevalence study among andean and low-altitude adult individuals of Peru. Obesity (Silver Spring), 2016, 24(4): 929-937.
|
42. |
Duan W, Shen X, Lei J, et al. Hyperglycemia, a neglected factor during cancer progression. Biomed Res Int, 2014, 2014: 461917.
|
43. |
Woolcott OO, Ader M, Bergman RN. Glucose homeostasis during short-term and prolonged exposure to high altitudes. Endocr Rev, 2015, 36(2): 149-173.
|
44. |
Hensley CT, Faubert B, Yuan Q, et al. Metabolic Heterogeneity in Human Lung Tumors. Cell, 2016, 164(4): 681-694.
|
45. |
Labak CM, Wang PY, Arora R, et al. Glucose transport: meeting the metabolic demands of cancer, and applications in glioblastoma treatment. Am J Cancer Res, 2016, 6(8): 1599-1608.
|
46. |
Huang C, Freter C. Lipid metabolism, apoptosis and cancer therapy. Inter J Molecular Sci, 2015, 16(1): 924-949.
|
47. |
Hashmi S, Wang Y, Suman DS, et al. Human cancer: is it linked to dysfunctional lipid metabolism? Biochim Biophys Acta, 2015, 1850(2): 352-364.
|
48. |
Ackerman D, Simon MC. Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol, 2014, 24(8): 472-478.
|
49. |
Stock C, Gassner B, Hauck CR, et al. Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. J Physiol, 2005, 567(Pt 1): 225-238.
|
50. |
Ibrahim-Hashim A, Cornnell HH, Abrahams D, et al. Systemic buffers inhibit carcinogenesis in TRAMP mice. J Urol, 2012, 188(2): 624-631.
|
51. |
Azzarito T, Lugini L, Spugnini EP, et al. Effect of modified alkaline supplementation on syngenic melanoma growth in CB57/BL Mice. PloS One, 2016, 11(7): e0159763.
|
52. |
Robey IF, Nesbit LA. Investigating mechanisms of alkalinization for reducing primary breast tumor invasion. Biomed Res Int, 2013, 2013: 485196.
|
53. |
Swenson ER. Hypoxia and its acid-base consequences: from mountains to malignancy. Adv Exp Med Biol, 2016, 903: 301-323.
|
54. |
Wang JS, Wu CK. Systemic hypoxia affects exercise-mediated antitumor cytotoxicity of natural killer cells. J Appl Physiol (1985), 2009, 107(6): 1817-1824.
|