1. |
Paing M P, Choomchuay S. Ground glass opacity (GGO) nodules detection from lung CT scans. International Symposium on Electronics and Smart Devices, 2017: 230-235.
|
2. |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446.
|
3. |
Austin JH, Müller NL, Friedman PJ, et al. Glossary of terms for CT of the lungs: recommendations of the Nomenclature Committee of the Fleischner Society. Radiology, 1996, 200(2): 327-331.
|
4. |
Lee HY, Lee KS. Ground-glass opacity nodules: histopathology, imaging evaluation, and clinical implications. Thorac Imaging, 2011, 26(2): 106-118.
|
5. |
Ramiporta R, Bolejack V, Crowley J, et al. The IASLC Lung Cancer Staging Project: Proposals for the Revisions of the T Descriptors in the Forthcoming Eighth Edition of the TNM Classification for Lung Cancer. J Thorac Oncol, 2015, 10(7): 990-1003.
|
6. |
Dmsci JH, Saghir Z, Wille MM, et al. Ground-glass opacity lung nodules in the era of lung cancer ct screening: radiology, pathology, and clinical management. Oncol, 2016, 30(3): 266-274.
|
7. |
Gao JW, Rizzo S, Ma LH, et al. Pulmonary ground-glass opacity: computed tomography features, histopathology and molecular pathology. Transl Lung Cancer Res, 2017, 6(1): 68-75.
|
8. |
Engeler CE, Tashjian JH, Trenkner SW, et al. Ground-glass opacity of the lung parenchyma: a guide to analysis with high-resolution CT. Am J Roentgenol, 1993, 160(2): 249-251.
|
9. |
Lee SM, Park CM, Goo JM, et al. Invasive pulmonary adenocarcinomas versus preinvasive lesions appearing as ground-glass nodules: differentiation by using CT features. Radiol, 2013, 268(1): 265-273.
|
10. |
Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 2014, 5: 4006.
|
11. |
Sun F, Xi J, Zhan C, et al. Ground glass opacities: Imaging, pathology and gene mutations. J Thorac Cardiovasc Surg, 2018, 156(2): 808-813.
|
12. |
Robert J. Gillies, Paul E. Kinahan, Hedvig hricak, et al Radiomics: images are more than pictures, they are data. Radiology, 2016, 278(2): 563-577.
|
13. |
Yuan M, Zhang YD, Pu XH, et al. Comparison of a radiomic biomarker with volumetric analysis for decoding tumour phenotypes of lung adenocarcinoma with different disease-specific survival. Eur Radiol, 2017, 27(11): 4857-4865.
|
14. |
Zhang X, Xu X, Tian Q, et al. Radiomics assessment of bladder cancer grade using texture features from diffusion-weighted imaging. J Magn Reson Imaging, 2017, 46(5): 1281-1288.
|
15. |
Huang Y, Liu Z, He L, et al. Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer. Radiology, 2016, 281(3): 947-957.
|
16. |
Coroller TP, Grossmann P, Hou Y, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol, 2015, 114(3): 345-350.
|
17. |
Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol, 2018, 19(9): 1180-1191.
|
18. |
Yang Y, Yang Y, Zhou X, et al. EGFR L858R mutation is associated with lung adenocarcinoma patients with dominant ground-glass opacity. Lung Cancer, 2015, 87(3): 272-277.
|
19. |
Dai J, Zhang P, Yang Y, et al. F-043 the predictive value of radiologic features of ground-glass opacity on tumour invasiveness and epidermal growth factor receptor mutation. Inter Cardiovasc Thorac Surg, 2015, 21(suppl_1): S12-S13.
|
20. |
Mackin D, Fave X, Zhang L, et al. Measuring computed tomography scanner variability of radiomics features. Invest Radiol, 2015, 50(11): 757-765.
|
21. |
Suzuki K, Li F, Sone S, Doi K. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose ct by use of massive training artificial neural network. IEEE Transactions on Medical Imaging, 2005, 24(9): 1138-1150.
|
22. |
Kumar V, Gu YH, Basu S, et al. QIN " Radiomics: The Process and the Challenges”. Magn Reson Imaging, 2012, 30(9): 1234-1248.
|
23. |
Muller-Gartner HW, Links JM, Prince JL, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: mri-based correction for partial volume effects. J Cereb Blood Flow Metab, 1992, 12(4): 571-583.
|
24. |
Zhang YJ. A survey on evaluation methods for image segmentation. Pattern Recognition, 1996, 28(8): 1335-1346.
|
25. |
Vincent L, Soille P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583-598.
|
26. |
Sethian JA. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. 2nd ed. Cambridge: Cambridge University Press, 1999.
|
27. |
Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognition, 1993, 26(9): 1277-1294.
|
28. |
Malladi R, Sethian JA, Vemuri BC. Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell, 1995, 17(2): 158-175.
|
29. |
Yamamoto S, Korn RL, Oklu R, et al. Kuo ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization. Radiology, 2014, 272(2): 568-576.
|
30. |
Wu T, Zhou F, Soodeen-Lalloo AK, et al. The association between imaging features of tsct and the expression of pd-l1 in patients with surgical resection of lung adenocarcinoma. Clin Lung Cancer, 2018 Nov 14. doi: 10.1016/j.cllc.2018.10.012.[Epubaheadofprint].
|
31. |
Zhou M, Leung A, Echegaray S, et al. Non-small cell lung cancer radiogenomics map identifies relationships between molecular and imaging phenotypes with prognostic implications. Radiology, 2017, 286(1): 307-315.
|
32. |
Gruetzemacher, Richard, Gupta, et al. U. 2016, AMCIS2016, Intelligence and Intelligent Systems (SIsing deep learning for pulmonary nodule detection & diagnosis GODIS).
|
33. |
Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med, 2018, 24(10): 1559-1567.
|
34. |
Lambin P, Rth L, Deist T M, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology, 2017, 14(12): 749.
|
35. |
Kalpathycramer J, Mamomov A, Zhao B, et al. Radiomics of lung nodules: a multi-institutional study of robustness and agreement of quantitative imaging features. Tomography, 2016, 2(4): 430-437.
|
36. |
Lee G, Park H, Sohn I, et al. Comprehensive computed tomography radiomics analysis of lung adenocarcinoma for prognostication. Oncologist, 2018, 23(7): 806-813.
|
37. |
Li J, Xia T, Yang X, et al. Malignant solitary pulmonary nodules: assessment of mass growth rate and doubling time at follow-up CT. J Thorac Dis, 2018, 10(S7): S797-S806.
|
38. |
Qin L, Gavrielides MA, Sahiner B, et al. Statistical analysis of lung nodule volume measurements with CT in a large-scale phantom study. Medical Physics, 2015, 42(7): 3932.
|
39. |
Han D, Heuvelmans M, Vliegenthart R, et al. Influence of lung nodule margin on volume- and diameter-based reader variability in CT lung cancer screening. Br J Radiol, 2018, 91(1090): 20170405.
|
40. |
Bae KT, Fuangtharnthip P, Prasad SR, et al. Adrenal masses: CT characterization with histogram analysis method. Radiology, 2003, 228(3): 735-742.
|
41. |
Ko JP, Suh J, Ibidapo O, et al. Lung Adenocarcinoma: correlation of quantitative ct findings with pathologic findings. Radiology, 2016, 280(3): 931-939.
|
42. |
Son JY, Lee HY, Lee KS, et al. Quantitative CT analysis of pulmonary ground-glass opacity nodules for the distinction of invasive adenocarcinoma from pre-invasive or minimally invasive adenocarcinoma. PLoS One, 2014, 9(8): e104066.
|
43. |
Bak SH, Lee HY, Kim JH, et al. Quantitative CT scanning analysis of pure ground-glass opacity nodules predicts further ct scanning change. Chest, 2016, 149(1): 180-191.
|
44. |
Fried DV, Tucker SL, Zhou S, et al. Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys, 2014, 90(4): 834-842.
|
45. |
Ganeshan B, Abaleke S, Young RC, et al. Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging, 2010, 10(1): 137-143.
|
46. |
O’Connor JP, Rose CJ, Waterton JC, et al. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res, 2015, 21(2): 249-257.
|
47. |
Suzuki K, Li F, Sone S, et al. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging, 2005, 24(9): 1138-1150.
|
48. |
Zhao W, Yang J, Sun Y, et al. 3D Deep Learning from CT scans predicts tumor invasiveness of subcentimeter pulmonary adenocarcinomas. Cancer Res, 2018, 78(24): 6881-6889.
|
49. |
Limkin EJ, Sun R, Dercle L, et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Annals of Oncology, 2017, 28(6): 1191-1206.
|