1. |
Lorenzen JM, Martino F, Thum T. Epigenetic modifications in cardiovascular disease. Basic Res Cardiol, 2012, 107(2): 245.
|
2. |
Mazzio EA, Soliman KF. Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics, 2012, 7(2): 119-130.
|
3. |
Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging Cell, 2015, 14(6): 924-932.
|
4. |
Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis, 2010, 31(1): 27-36.
|
5. |
Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol, 2010, 28(10): 1057-1068.
|
6. |
Tammen SA, Friso S, Choi SW. Epigenetics: the link between nature and nurture. Mol Aspects Med, 2013, 34(4): 753-764.
|
7. |
Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine. Lancet, 2018, 392(10149): 777-786.
|
8. |
Andersen GB, Tost J. A summary of the biological processes, disease-associated changes, and clinical applications of DNA methylation. Methods Mol Biol, 2018, 1708: 3-30.
|
9. |
张又嘉, 陈宇虹, 雷苑. 表观遗传调控与青光眼发病机制研究进展. 眼科新进展, 2019, 39(5): 477-481.
|
10. |
Traube FR, Carell T. The chemistries and consequences of DNA and RNA methylation and demethylation. RNA Biol, 2017, 14(9): 1099-1107.
|
11. |
陈悦, 李杰, 陈伶利, 等. 冠心病血瘀证与 DNA 甲基化/羟甲基化关系及研究进展. 湖南中医药大学学报, 2018, 38(9): 1077-1081.
|
12. |
Zhuang J, Luan P, Li H, et al. The Yin-Yang dynamics of DNA methylation is the key regulator for smooth muscle cell phenotype switch and vascular remodeling. Arterioscler Thromb Vasc Biol, 2017, 37(1): 84-97.
|
13. |
Kolendowski B, Hassan H, Krstic M, et al. Genome-wide analysis reveals a role for TDG in estrogen receptor-mediated enhancer RNA transcription and 3-dimensional reorganization. Epigenetics Chromatin, 2018, 11(1): 5.
|
14. |
Cheng YW, Chou CJ, Yang PM. Ten-eleven translocation 1 (TET1) gene is a potential target of miR-21-5p in human colorectal cancer. Surg Oncol, 2018, 27(1): 76-81.
|
15. |
Chen QW, Zhu XY, Li YY, et al. Epigenetic regulation and cancer (review). Oncol Rep, 2014, 31(2): 523-532.
|
16. |
Perri F, Longo F, Giuliano M, et al. Epigenetic control of gene expression: Potential implications for cancer treatment. Crit Rev Oncol Hematol, 2017, 111: 166-172.
|
17. |
Kouzarides T. Chromatin modifications and their function. Cell, 2007, 128(4): 693-705.
|
18. |
李芳卉, 李东泽, 张蜀. 微小 RNA 和长链非编码 RNA 作为心脏疾病生物标志物的研究进展. 中国循环杂志, 2017, 32(11): 1131-1133.
|
19. |
Gangwar RS, Rajagopalan S, Natarajan R, et al. Noncoding RNAs in cardiovascular disease: pathological relevance and emerging role as biomarkers and therapeutics. Am J Hypertens, 2018, 31(2): 150-165.
|
20. |
Zdravkovic S, Wienke A, Pedersen NL, et al. Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins. J Intern Med, 2002, 252(3): 247-254.
|
21. |
Khera AV, Emdin CA, Drake I, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med, 2016, 375(24): 2349-2358.
|
22. |
Said MA, Verweij N, van der Harst P. Associations of combined genetic and lifestyle risks with incident cardiovascular disease and diabetes in the UK biobank study. JAMA Cardiol, 2018, 3(8): 693-702.
|
23. |
Sotos-Prieto M, Baylin A, Campos H, et al. Lifestyle cardiovascular risk score, genetic risk score, and myocardial infarction in Hispanic/Latino adults living in Costa Rica. J Am Heart Assoc, 2016, 5(12): pii: e004067.
|
24. |
Prospective Studies Collaboration, Lewington S, Whitlock G, et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55 000 vascular deaths. Lancet, 2007, 370(9602): 1829-1839.
|
25. |
Sniderman AD, Islam S, McQueen M, et al. Age and cardiovascular risk attributable to apolipoprotein B, low-density lipoprotein cholesterol or non-high-density lipoprotein cholesterol. J Am Heart Assoc, 2016, 5(10): pii: e003665.
|
26. |
Cook NR, Buring JE, Ridker PM. The effect of including C-reactive protein in cardiovascular risk prediction models for women. Ann Intern Med, 2006, 145(1): 21-29.
|
27. |
Rulands S, Lee HJ, Clark SJ, et al. Genome-scale oscillations in DNA methylation during exit from pluripotency. Cell Syst, 2018, 7(1): 63-76.
|
28. |
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol, 2013, 14(10): R115.
|
29. |
Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA, 2008, 105(44): 17046-17049.
|
30. |
Javed R, Chen W, Lin F, et al. Infant's DNA methylation age at birth and epigenetic aging accelerators. Biomed Res Int, 2016, 2016: 4515928.
|
31. |
Bekkering S, Blok BA, Joosten LA, et al. In vitro experimental model of trained innate immunity in human primary monocytes. Clin Vaccine Immunol, 2016, 23(12): 926-933.
|
32. |
Miao F, Chen Z, Genuth S, et al. Evaluating the role of epigenetic histone modifcations in the metabolic memory of type 1 diabetes. Diabetes, 2014, 63: 48-62.
|
33. |
El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med, 2008, 205(10): 2409-2417.
|
34. |
Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia, 2015, 58(3): 443-455.
|
35. |
李芳卉, 李东泽, 曾锐. 微小 RNA 在主动脉瘤中的研究进展. 临床心血管病杂志, 2018, 34: 851-855.
|
36. |
Lino Cardenas CL, Kessinger CW, Cheng Y, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun, 2018, 9(1): 1009.
|
37. |
Shah AA, Gregory SG, Krupp D, et al. Epigenetic profiling identifies novel genes for ascending aortic aneurysm formation with bicuspid aortic valves. Heart Surg Forum, 2015, 18(4): E134-E139.
|
38. |
Kim CW, Kumar S, Son DJ, et al. Prevention of abdominal aortic aneurysm by anti-microRNA-712 or anti-microRNA-205 in angiotensin Ⅱ-infused mice. Arterioscler Thromb Vasc Biol, 2014, 34(7): 1412-1421.
|
39. |
Jiao T, Yao Y, Zhang B, et al. Role of microRNA-103a targeting ADAM10 in abdominal aortic aneurysm. Biomed Res Int, 2017, 2017: 9645874.
|
40. |
Zampetaki A, Attia R, Mayr U, et al. Role of miR-195 in aortic aneurysmal disease. Circ Res, 2014, 115(10): 857-866.
|
41. |
Fuster JJ, MacLauchlan S, Zuriaga MA, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science, 2017, 355(6327): 842-847.
|
42. |
Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res, 2016, 118(4): 692-702.
|
43. |
Peng J, Yang Q, Li AF, et al. Tet methylcytosine dioxygenase 2 inhibits atherosclerosis via upregulation of autophagy in ApoE-/- mice. Oncotarget, 2016, 7(47): 76423-76436.
|
44. |
Li G, Peng J, Liu Y, et al. Oxidized low-density lipoprotein inhibits THP-1-derived macrophage autophagy via TET2 down-regulation. Lipids, 2015, 50(2): 177-183.
|
45. |
International Stroke Genetics Consortium (ISGC), Wellcome Trust Case Control Consortium 2 (WTCCC2), Bellenguez C, et al. Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet, 2012, 44(3): 328-333.
|
46. |
Markus HS, Mäkelä KM, Bevan S, et al. Evidence HDAC9 genetic variant associated with ischemic stroke increases risk via promoting carotid atherosclerosis. Stroke, 2013, 44(5): 1220-1225.
|
47. |
Hai Z, Zuo W. Aberrant DNA methylation in the pathogenesis of atherosclerosis. Clin Chim Acta, 2016, 456: 69-74.
|
48. |
Lövkvist C, Dodd IB, Sneppen K, et al. DNA methylation in human epigenomes depends on local topology of CpG sites. Nucleic Acids Res, 2016, 44(11): 5123-5132.
|
49. |
Hautefort A, Chesné J, Preussner J, et al. Pulmonary endothelial cell DNA methylation signature in pulmonary arterial hypertension. Oncotarget, 2017, 8(32): 52995-53016.
|
50. |
Gamen E, Seeger W, Pullamsetti SS. The emerging role of epigenetics in pulmonary hypertension. Eur Respir J, 2016, 48(3): 903-917.
|
51. |
Leisegang MS, Fork C, Josipovic I, et al. Long noncoding RNA MANTIS facilitates endothelial angiogenic function. Circulation, 2017, 136(1): 65-79.
|
52. |
Neumann P, Jaé N, Knau A, et al. The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2. Nat Commun, 2018, 9(1): 237.
|
53. |
Kim HW, Stansfield BK. Genetic and epigenetic regulation of aortic aneurysms. Biomed Res Int, 2017, 2017: 7268521.
|
54. |
Hwang JY, Aromolaran KA, Zukin RS. Epigenetic mechanisms in stroke and epilepsy. Neuropsychopharmacology, 2013, 38(1): 167-182.
|
55. |
Gal5n M, Varona S, Orriols M, et al. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors. Dis Model Mech, 2016, 9(5): 541-552.
|